• Title/Summary/Keyword: flutter

Search Result 505, Processing Time 0.022 seconds

A Modified Technique in Surgical Correction of Ebstein Anomaly (Ebstein 기형 교정의 변형 술식)

  • 윤석원;윤태진;박정준;서동민
    • Journal of Chest Surgery
    • /
    • v.35 no.11
    • /
    • pp.817-821
    • /
    • 2002
  • There are various surgical techniques in repairing Ebstein anomaly, but residual tricuspid regurgitation and compromized right heart function may ensue in some cases. We report our clinical experience of Ebstein anomaly and atrial flutter in a 19-year-old male patient who underwent simple modified tricuspid annuloplasty, hi-directional cavopulmonary shunt and cryoablation of cavotricuspid isthmus.

Theoretical Study on The Stability of the Cantilever Beam Subjected to a Follower Force (종동력을 받는 외팔보의 안정성에 관한 이론적 연구)

  • 윤한익;손종동;김현수
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.1
    • /
    • pp.3-12
    • /
    • 1998
  • On the stability of the cantilever beam subjected to a follower force at the free end, the influences of the translational spring and the moment of inertia of a tip mass at the free end have been studied by numerical methods. The centroid of a tip mass is offset from the free end of a Beam and is located along its extended axis to vary the value of moment of inertia of a tip mass. It is proved that as the constants of a spring supporting the free end are augmented, the critical flutter loads of the above system decrease, whereas they increase without a tip mass.

  • PDF

The Stability Analysis of Non-Conservative System including Damping Effects (감쇠효과(減衰效果)를 고려한 비보존력계(非保存力系) 안정성(安定性) 해석(解析))

  • Kim, Moon Young;Chang, Sung Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.57-65
    • /
    • 1990
  • The finite element menthod for the investigation of the static and dynamic stability of the plane framed structures subjected to non-conservative forces is presented. By using the Hermitian polynomial as the shape function, the geometric stiffness matrix, the load correction stiffness matrix for non-conservative forces, and the matrix equation of internal and external damping are derived. Then, a matrix equation of the motion for the non-conservative system is formulated and the critical divergence and flutter loads are determined from this equation.

  • PDF

Dynamics of an Axially Moving Bernoulli-Euler Beam: Spectral Element Modeling and Analysis

  • Hyungmi Oh;Lee, Usik;Park, Dong-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.395-406
    • /
    • 2004
  • The spectral element model is known to provide very accurate structural dynamic characteristics, while reducing the number of degree-of-freedom to resolve the computational and cost problems. Thus, the spectral element model for an axially moving Bernoulli-Euler beam subjected to axial tension is developed in the present paper. The high accuracy of the spectral element model is then verified by comparing its solutions with the conventional finite element solutions and exact analytical solutions. The effects of the moving speed and axial tension on the vibration characteristics, wave characteristics, and the static and dynamic stabilities of a moving beam are investigated.

Finite Element Model Building Procedure of an External Mounting Pod for Structural Dynamic Characteristics Analysis of an Aircraft (항공기 구조 동특성 해석을 위한 외부 장착 포드의 유한요소모델 구축 절차)

  • Lee, Jong-Hak;Ryu, Gu-Hyun;Yang, Sung-Chul;Jung, Dae-Yoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.72-77
    • /
    • 2011
  • In this study, the natural frequencies and mode shape of an external mounting pod were verified using the modal analysis and modal testing technique for a pod mounted on an aircraft. The procedure associated with the FEM building of an external mounted pod to predict the dynamic behavior of aircraft structures is described. The simplified FEM reflecting the results of the modal testing of a pod is built through the optimization, applied to the structural dynamic model of an Aircraft, used to verified the stability of vibration and flutter of an aircraft.

  • PDF

Scale Effect on the Flow-Induced Vibration of Carbon Nanotubes Conveying Fluids (Scale effect를 고려한 탄소나노튜브의 유체유발진동)

  • Choi, Jong-Woon;Kim, Sung-Kyun;Park, Sang-Yun;Kim, Young-June;Song, Oh-Seop
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.147-152
    • /
    • 2011
  • In this paper, static and oscillatory loss of stability of carbon nanotube conveying fluid and modelled as a thin-walled beam is investigated. Analytically nonlocal effect, transverse shear and rotary inertia are incorporated in this study. The governing equations and the boundary conditions are derived through Hamilton's principle. Numerical analysis is performed by using extend Galerkin method which enables us to obtain more exact solutions compared with conventional Galerkin method. Variations of critical flow velocity for analytically nonlocal effect, partially nonlocal effect and local effect of carbon nanopipes are investigated and pertinent conclusion is outlined.

  • PDF

Aeroelastic Analyses of Space Rocket Configuration Considering Viscosity Effects (유동점성효과를 고려한 우주발사체 형상의 천음속 공탄성해석)

  • Kim, Yo-Han;Kim, Dong-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.64-71
    • /
    • 2011
  • In this study, steady and unsteady aerodynamic analyses of a huge rocket configuration have been conducted in a transonic flow region. The launch vehicle structural response are coupled with the transonic flow state transitions at the nose of the payload fairing. The developed fluid-structure coupled analysis system is applied for aeroelastic computations combining computational structural dynamics(CSD), finite element method(FEM) and computational fluid dynamics(CFD) in the time domain. It can give very accurate and useful engineering data on the structural dynamic design of advanced flight vehicles. For the nonlinear unsteady aerodynamics in high transonic flow region, Navier-Stokes equations using the structured grid system have been applied to the rocket configurations. Also, it is typically shown that the current computation approach can yield realistic and practical results for rocket design and test engineers.

  • PDF

Brake Squeal Analysis with Respect to Caliper Contact Stiffness (캘리퍼 접촉강성을 고려한 브레이크 스퀼 해석)

  • Nam, Jaehyun;Kang, Jaeyoung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.8
    • /
    • pp.717-724
    • /
    • 2013
  • The present study provides the numerical results in association with caliper stiffness and friction curve. From the numerical results, it is concluded that the pad vibration modes with dominant displacement in rotation direction is sensitive in the flutter instability. Particularly, the pad rigid mode is shown to become the squeal mode when the caliper stiffness is introduced in brake squeal model. Therefore, the caliper contact stiffness between the pad and caliper is expected to contribute to the squeal modes of the brake pad.

Effects of Attached Mass on Stability of Pipe Conveying Fluid with Crack (크랙을 가진 유체유동 파이프의 안정성에 미치는 부가질량의 영향)

  • Son, In-Soo;Cho, Jeong-Rae;Yoon, Han-Ik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.10
    • /
    • pp.1002-1009
    • /
    • 2007
  • In this paper, the dynamic stability of a cracked simply supported pipe conveying fluid with an attached mass is investigated. Also, the effect of attached mass on the dynamic stability of a simply supported pipe conveying fluid is presented for the different positions and depth of the crack. Based on the Euler-Bernouli beam theory, the equation of motion can be constructed by the energy expressions using extended Hamilton's principle. The crack section is represented by a local flexibility matrix connecting two undamaged pipe segments. The crack is assumed to be in the first mode of a fracture and to be always opened during the vibrations. Finally, the critical flow velocities and stability maps of the pipe conveying fluid are obtained by changing the attached mass and crack severity.

Transonic Aeroelastic Analysis of a Airfoil with Friction Damping (마찰 감쇠를 고려한 에어포일의 천음속 공탄석 해석)

  • Yoo, Jae-Han;Lee, In
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.11
    • /
    • pp.1075-1080
    • /
    • 2010
  • For the aeroelastic analysis of a wing with friction damping, coupled time integration method was used to obtain time responses in the subsonic and transonic regions. To take into account aerodynamic nonlinearity induced by shock wave on the lifting surface, transonic small disturbance equation with in-phase periodic boundary condition was used for unsteady aerodynamic calculation. For 2-DOF airfoil system with displace-dependent friction dampers, the effects of normal load slope and Mach number on flutter boundary were investigated.