• Title/Summary/Keyword: fluorescence index

Search Result 142, Processing Time 0.031 seconds

Phylogenetic diversity of bacterial communities in a gray solar saltern and isolation of extremely halophilic bacteria using culturomics (토판염전 결정지 내 세균군집의 계통학적 다양성 및 Culturomics법을 이용한 고도 호염균의 분리)

  • Cho, Geon-Yeong;Han, Song-Ih;Whang, Kyung-Sook
    • Korean Journal of Microbiology
    • /
    • v.53 no.1
    • /
    • pp.29-38
    • /
    • 2017
  • In this study, we investigated the phylogenetic diversity of the bacterial community and isolation of extremely halophilic bacteria using culturomics in a gray solar saltern. The number of bacterial living cells, enumerated in a gray solar saltern by direct fluorescence microscopy was three to four orders of magnitude greater than those enumerated by plate counts, suggesting the distribution of 'viable but non-culturable bacteria'. The biodiversity of bacterial communities in a gray solar saltern was investigated by pyrosequencing, 1,778 OTUs of bacteria were comprised of 18 phyla 46 classes 85 orders 140 families 243 genera with 6.16 diversity index. Archaea communities were composed of 3 phyla 6 classes 7 orders 7 families 38 genera with 4.95 diversity index from 643 OTUs. Totally 137 isolates were isolated by 59 different cultural methods based on culturomics considering culture media and conditions suitable for the growth of extremely halophilic bacteria. Phylogenetic analyses of extremely halophilic isolates based on 16S rRNA gene sequences, extremely halophilic isolates were composed of 4 phyla and 11 genera. Haloterrigena and Haloferax can be successfully isolated from culturomics. These culturomics were effective methods for collection of diversity of extremely halophilic bacteria.

Effects of Mitomycin C on Sister Chromatid Exchanges in Cultured Human Lympocytes (항암제 Mitomycin C가 배양임파구의 자매염색분체 교환에 미치는 영향)

  • Hwang, In-Dam;Ki, No-Suk;Lee, Jeong-Sang;Kim, Nam-Song;Mun, Tae-Il
    • Journal of Preventive Medicine and Public Health
    • /
    • v.19 no.2 s.20
    • /
    • pp.244-251
    • /
    • 1986
  • Sister chromatid exchanges(SCEs) and cell cycle kinetics were proposed as a sensitive and quantitative assay for mutagenicity and cytotoxicity in short-term cultures of phytohema-gglutinin(PHA)-stimu1ated human 1ymphocytes. Therefore, this study was performed to investigate the relation between the cytotoxic effects and sister chromatid exchanges. The resultes are summarized as follows: 1) The frequency of SCEs per cell are $13.1{\pm}2.8$ in the lower concentration of $6.25{\times}10^{-9}M\;and\;75.8{\pm}8.2$ in the highest concentration of $1.00{\pm}10^{-7}M$. Mitotic index is decreased in the higher concentration of mitomycin C. The result indicates that mitomycin C led to a dose dependent increase in SCE frequency, but decease in mitotic index. 2) Chromosomal analysis was performed on metaphase cells that have divided one, two, and three or more times for cell cycle kinetics by fluorescence-plus-Giemsa(FPG) technique. According to the increased concentration of mitomycin C, the proportion of metaphase cells in the first are profoundly increased but the cells of third division are greatly decreased. 3) The frequency of SCEs per chromosome by chromosomal group are decreased gradually from A group to G group. But relationships between specific chromosomal group and SCE frequency are not found.

  • PDF

The Effects of Fertilization on Growth Performances and Physiological Characteristics of Liriodendron tulipifera in a Container Nursery System (시비 처리가 백합나무 용기묘의 생장 및 생리적 특성에 미치는 영향)

  • Cho, Min Seok;Lee, Soo Won;Park, Byung Bae;Park, Gwan Su
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.2
    • /
    • pp.305-313
    • /
    • 2011
  • Fertilization is essential to seedling production in nursery culture, but excessive fertilization can contaminate surface and ground water around the nursery. The objective of this study was to find optimal fertilization practice of container seedling production for reducing soil and water contamination around the nursery without compromising seedling quality. This study was conducted to investigate growth performance, photosynthesis, chlorophyll fluorescence, and chlorophyll contents of Liriodendron tulipifera growing under three different fertilization treatments (Constant rate, Three-stage rate, and Exponential rate fertilization). Root collar diameter, height, and biomass of L. tulipifera were the highest at Constant treatment. Like growth performance, seedling quality index (SQI) were higher at Constant than at other treatments, but not significantly different among treatments. L. tulipifera showed good photosynthetic capacity at all treatments. Photochemical efficiency and chlorophyll contents were significantly lower at Exponential than at other treatments. Therefore, Exponential fertilization which is 50% fertilizer of other treatments would maximize seedling growth and minimize nutrient loss.

Introduction of a New Method for Total Organic Carbon and Total Nitrogen Stable Isotope Analysis of Dissolved Organic Matter in Aquatic Environments (수환경 내 용존성 유기물질의 총 유기탄소 및 총 질소 안정동위원소 신규 분석법 소개)

  • Si-yeong Park;Heeju Choi;Seoyeon Hong;Bo Ra Lim;Seoyeong Choi;Eun-Mi Kim;Yujeong Huh;Soohyung Lee;Min-Seob Kim
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.4
    • /
    • pp.339-347
    • /
    • 2023
  • Dissolved organic matter (DOM) is a key component in the biogeochemical cycling in freshwater ecosystem. However, it has been rarely explored, particularly complex river watershed dominated by natural and anthropogenic sources, such as various effluent facility and livestock. The current research developed a new analytical method for TOC/TN (Total Organic Carbon/Total Nitrogen) stable isotope ratio, and distinguish DOM source using stable isotope value (δ13C-DOC) and spectroscopic indices (fluorescence index [FI] and biological index [BIX]). The TOC/TN-IR/MS analytical system was optimized and precision and accuracy were secured using two international standards (IAEA-600 Caffein, IAEA-CH-6 Sucrose). As a result of controlling the instrumental conditions to enable TOC stable isotope analysis even in low-concentration environmental samples (<1 mgC L-1), the minimum detection limit was improved. The 12 potential DOM source were collected from watershed, which includes top-soils, groundwater, plant group (fallen leaves, riparian plants, suspended algae) and effluent group (pig and cow livestock, agricultural land, urban, industry facility, swine facility and wastewater treatment facilities). As a result of comparing characteristics between 12 sources using spectroscopic indices and δ13C-DOC values, it were divided into four groups according to their characteristics as a respective DOM sources. The current study established the TOC/TN stable isotope analyses system for the first time in Korea, and found that spectroscopic indices and δ13C-DOC are very useful tool to trace the origin of organic matter in the aquatic environments through library database.

A Study on the Dynamics of Dissolved Organic Matter Associated with Ambient Biophysicochemical Factors in the Sediment Control Dam (Lake Youngju) (영주댐 유사조절지 상류의 용존유기물 (Dissolved Organic Matter) 특성과 물리·화학 및 생물학적 환경 요인과의 연관성 연구)

  • Oh, Hye-Ji;Kim, Dokyun;Choi, Jisoo;Chae, Yeon-Ji;Oh, Jong Min;Shin, Kyung-Hoon;Choi, Kwangsoon;Kim, Dong-Kyun;Chang, Kwang-Hyeon
    • Korean Journal of Ecology and Environment
    • /
    • v.54 no.4
    • /
    • pp.346-362
    • /
    • 2021
  • A sediment control dam is an artificial structure built to prolong sedimentation in the main dam by reducing the inflow of suspended solids. These dams can affect changes in dissolved organic matter (DOM) in the water body by changing the river flow regime. The main DOM component for Yeongju Dam sediment control of the Naeseongcheon River was analyzed through 3D excitation-emission matrix (EEM) and parallel factor (PARAFAC) analyses. As a result, four humic-like components (C1~C3, C5), and three proteins, tryptophan-like components (C2, C6~C7) were detected. Among DOM components, humic-like components (autochthonous: C1, allochthonous: C2~C3) were found to be dominant during the sampling period. The total amount of DOM components and the composition ratio of each component did not show a difference for each depth according to the amount of available light (100%, 12%, and 1%). Throughout the study period, the allochthonous organic matter was continuously decomposing and converting into autochthonous organic matter; the DOM indices (fluorescence index, humification index, and freshness index) indicated the dominance of autochthonous organic matter in the river. Considering the relative abundance of cyanobacteria and that the number of bacteria cells and rotifers increased as autochthonous organic matter increased, it was suggested that the algal bloom and consequent activation of the microbial food web was affected by the composition of DOM in the water body. Research on DOM characteristics is important not only for water quality management but also for understanding the cycling of matter through microbial food web activity.

Physico-Chemical Properties of $Tl_2O-B_2O_3-SiO_2$ Glasses and Their Phase Separations ($Tl_2O-B_2O_3-SiO_2$ 系 유리의 物理化學的 性質 및 그의 分相)

  • Kim, Kee-Hyong
    • Journal of the Korean Chemical Society
    • /
    • v.12 no.2
    • /
    • pp.65-80
    • /
    • 1968
  • The physico-chemical properties of nine selected thallium borosilicate glasses and other 21 supplementary compositions were investigated. Their composition-property curves are found to be in many respects analogous to those of other borosilicate glasses containing lithia, soda, and lead oxide. It is indicated that certain minima found in the composition-property curves of thallium borosilicate glasses might be caused by a change in boron coordination as has been observed to occur in the $Na_2O-B_2O_3-SiO_2$ glasses. Typical effects of thallium ions on the borosilicate glass are summarized as follows: 1) Addition of thallium ions increased density, refractive index, water solubility, linear coefficient of thermal expansion, and dielectric constant. 2) Increased concentration of thallium decreased the softening point of the glasses, caused fluorescence under ultraviolet radiation and smeared out the absorption edges up to $15{\mu}$ in the infrared region. An extensive liquid immiscibility was found by replication electron microscope technique in the $Tl_2O-B_2O_3-SiO_2$ system. The immiscibility covers a composition range roughly from 55 wt. % Tl2O to the binary system $B_2O_3-SiO_2.$ By acid treatment, it was found that the immiscible glass consists of separate silica-rich and boron-rich phases.

  • PDF

Relationship among Plasma Homocysteine, Folate, Vitamin $B_{12}$ and Nutrient Intake and Neurocognitive Function in the Elderly (노인의 혈중 호모시스테인, 엽산, 비타민 $B_{12}$ 수준 및 영양소 섭취 상태와 신경인지기능과의 관련성)

  • Kim, Hee-Jung;Kim, Hye-Sook;Kim, Ki-Nam;Kim, Ggot-Pin;Son, Jung-In;Kim, Seong-Yoon;Chang, Nam-Soo
    • Journal of Nutrition and Health
    • /
    • v.44 no.6
    • /
    • pp.498-506
    • /
    • 2011
  • This study examined the relationship among plasma homocysteine, folate, and vitamin $B_{12}$ levels and neurocognitive function in 118 community-dwelling elderly subjects (mean age, $75.1{\pm}6.7$ years). The Mini-Mental State Examination (MMSE-KC) was used to screen and assess neurocognitive function in the participants. Dietary intake data including the use of dietary supplements were obtained using the 24-hour recall method by well-trained interviewers. Plasma folate and vitamin $B_{12}$ concentrations were analyzed by radioimmunoassay, and homocysteine was assessed by a high performance liquid chromatography-fluorescence method. The proportions of participants with suboptimal levels of plasma folate (< 3 ng/mL), vitamin $B_{12}$ (< 221 pmol/mL), and homocysteine (> $15{\mu}mol/L$) were 16.1%, 5.9%, and 21.2%, respectively. A multiple regression analysis showed that plasma homocysteine was negatively associated with plasma folate and vitamin $B_{12}$ levels. The MMSE-KC test scores were significantly associated with plasma homocysteine and folate, but not with vitamin $B_{12}$, after adjusting for age, gender, body mass index, living with spouse, education, current smoking, energy intake, and chronic diseases such as hypertension, diabetes, thyroid disease, dyslipidemia, stroke, and cardiovascular disease. A general linear model adjusted for covariates revealed that MMSE-KC test scores increased from the lowest to the highest quartiles of vitamin $B_1$, vitamin $B_2$, vitamin $B_6$, vitamin $B_{12}$, and vitamin C intake (p for trend = 0.012, 0.039, 0.014, 0.046, 0.026, respectively). These results indicate that the problem of folate inadequacy and hyperhomocysteinemia are highly prevalent among community-dwelling elderly people and that dietary intake of the B vitamins and vitamin C is positively associated with cognitive function scores.

Effects of Fertilization Methods on the Growth and Physiological Characteristics of $Larix$ $kaempferi$ Seedlings in the Container Nursery System (시비처리 방법에 따른 낙엽송 용기묘의 생장 및 생리 특성)

  • Cho, Min-Seok;Lee, Soo-Won;Park, Byung-Bae
    • Journal of Bio-Environment Control
    • /
    • v.21 no.1
    • /
    • pp.57-65
    • /
    • 2012
  • Fertilization is essential to seedling production in nursery culture, but excessive fertilization can contaminate surface and ground water around the nursery. The objective of this study was to find optimal fertilization practice of container seedling production for reducing soil and water contamination around the nursery without compromising seedling quality. This study was conducted to investigate chemical properties of the growth medium, growth performance, chlorophyll fluorescence, and chlorophyll contents of larch ($Larix$ $kaempferi$) growing under three different fertilization treatments (Constant rate, Three stage rate, and Exponential rate fertilization). Root collar diameter and height of larch were not significantly different among treatments even though the nutrient supply of the exponential treatment was half that of the constant and three stage treatments. Chemical properties of the growth medium showed the same trends as root collar diameter and height. The total biomass and seedling quality index (SQI) were higher at Constant than at other treatments, but both SQI of Constant and Exponential were not significantly different. Photochemical efficiency and chlorophyll contents were lower at Exponential than at other treatments, but not significantly different among treatments. Therefore, Exponential fertilization which is 50% fertilizer of other treatments would maximize seedling growth and minimize nutrient loss.

Selection of a Triploid Poplar by Flow Cytometric Analysis and Growth Characteristics of its in vitro Grown Plants (유세포 분석을 통한 현사시나무 3배체 선발 및 계통별 기내생장 특성)

  • Bae, Eun-Kyung;Lee, Hyoshin;Lee, Jae-Soon;Noh, Eun-Woon
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.2
    • /
    • pp.291-296
    • /
    • 2012
  • Triploids are a useful tool for biomass production and molecular breeding of trees with a long life span. Triploids of the poplar 'Hyunsasi' (Populus alba ${\times}$ P. glandulosa) have been developed by crossing between female diploids and a male tetraploid. The tetraploid was developed around the 1970s at Korea Forest Research Institute by colchicine-induced chromosome doubling. Seedlings of the $F_1$ generation were analyzed using flow cytometry to verify their ploidy status. The mean relative fluorescence index of 3 F1 poplars, labeled as Line- 1, Line-17, Line-18, were approximately 1.5 times higher than those of diploid poplars, and the results clearly indicated that they were triploids. The phenotype of the F1 poplars included larger leaves and thicker stem than diploids, and abnormal leaf morphology, especially in the triploid 'Line-18'. Three triploid lines developed roots more slowly and had less roots than diploid. However, 3 poplar cytotypes (2x, Line-1, Line-17) rooted within 10 days on MS medium. In contrast, compared with the 3 cytotypes, the Line-18 showed about 80% and 70% in the rooting rate and the number of roots. The triploid poplars could be directly utilized for biomass production and with their sterility, they could serve as basic material for genetic transformation. In addition, flow cytometric analysis proved to be an effective and reliable method for screening forest trees for their ploidy level.

Effect of Incubation Time after Cooling on the Meiotic Spindle and Chromosomes of Mouse Oocytes (냉각 후 배양시간이 생쥐 난자의 방추체와 염색체에 미치는 영향)

  • Yu I.
    • Journal of Embryo Transfer
    • /
    • v.19 no.3
    • /
    • pp.283-289
    • /
    • 2004
  • This study was conducted to determine the effects of incubation time after cooling on mouse meiotic spindle and chromosome alignment and the optimal incubation time for their restoration. Oocytes at the metaphase II were obtained from superovulated mice. Control oocytes were held at 37$^{\circ}C$ during the experiment. Oocytes were rapidly cooled to $0^{\circ}C$, held for 30 minutes, warmed and incubated at 37$^{\circ}C$ for 5, 15, 30, 60 and 120 minutes, respectively. The morphological features of spindle and chromosomes in oocytes were evaluated by immunofluorescent staining. Meiotic spindle of control oocytes exhibited a normal-looking bipolar configuration(barrel-shaped) and highly fluorescent microtubles. The chromosomes were clustered in a discrete bundles at metaphase plate. Disassembly of meiotic spindle and chromosome dispersion were occurred immediately after chilling of oocyte. Fluorescence intensity index(FIS), normal chromosomes aligned and normal spindle configuration were compared according to incubation time at 37$^{\circ}C$. Restoration of a barrel-shaped spindle and normal chromosome alignment was occurring after 5 minutes incubation at 37$^{\circ}C$, improved as a incubation time increased, and decreased gradually after 120 minutes incubation(P<0.05). The optimal incubation time for restoration of meiotic spindle and chromosomes in cooled oocytes was 60 minutes.