Effects of Fertilization Methods on the Growth and Physiological Characteristics of $Larix$ $kaempferi$ Seedlings in the Container Nursery System

시비처리 방법에 따른 낙엽송 용기묘의 생장 및 생리 특성

  • Cho, Min-Seok (Forest Practice Research Center, Korea Forest Research Institute) ;
  • Lee, Soo-Won (Division of Forestry consulting, Korea Forestry Promotion Institute) ;
  • Park, Byung-Bae (Division of Forest Ecology, Korea Forest Research Institute)
  • 조민석 (국립산림과학원 산림생산기술연구소) ;
  • 이수원 (한국임업진흥원 개발확산팀) ;
  • 박병배 (국립산림과학원 산림생태연구과)
  • Received : 2012.02.02
  • Accepted : 2012.03.09
  • Published : 2012.03.31

Abstract

Fertilization is essential to seedling production in nursery culture, but excessive fertilization can contaminate surface and ground water around the nursery. The objective of this study was to find optimal fertilization practice of container seedling production for reducing soil and water contamination around the nursery without compromising seedling quality. This study was conducted to investigate chemical properties of the growth medium, growth performance, chlorophyll fluorescence, and chlorophyll contents of larch ($Larix$ $kaempferi$) growing under three different fertilization treatments (Constant rate, Three stage rate, and Exponential rate fertilization). Root collar diameter and height of larch were not significantly different among treatments even though the nutrient supply of the exponential treatment was half that of the constant and three stage treatments. Chemical properties of the growth medium showed the same trends as root collar diameter and height. The total biomass and seedling quality index (SQI) were higher at Constant than at other treatments, but both SQI of Constant and Exponential were not significantly different. Photochemical efficiency and chlorophyll contents were lower at Exponential than at other treatments, but not significantly different among treatments. Therefore, Exponential fertilization which is 50% fertilizer of other treatments would maximize seedling growth and minimize nutrient loss.

본 연구에서는 시비 처리에 따른 생육상토의 화학적 특성, 생장 특성 및 생리적 특성 변화를 조사 분석하여 최소 시비량에 대한 최대 생장 효과와 적정 시비 방법 적용에 따른 환경오염의 최소화를 목적으로 연구를 실시하였다. 시비 처리에 따른 생육 상토의 화학적 특성은 유의적 차이를 보이지 않았다. 그러나 pH의 경우 유의적 차이를 보였는데 시비량이 적은 Exponential 처리구에서 산성도는 가장 낮고, 시비량이 높은 Constant와 Three stage 처리에서 산성도가 높아, 시비에 따른 산성화가 진행되었음을 짐작할 수 있다. 시비 처리에 따른 근원경과 간장 생장은 유의적 차이를 보이지 않았으며, 세 시비 처리구 모두에서 낙엽송 용기묘 규격 이상의 우수한 생장을 나타냈다. H/D율과 T/R율은 Exponential 처리구에서 가장 낮은 값을 보였으며, 반면 물질생산량과 묘목품질지수는 Constant 처리구가 높은 값을 나타냈다. 시비 처리에 따른 광화학 효율과 엽록소 함량은 Constant 처리구에서 높았지만, 세 처리구 모두 유의적 차이는 보이지 않았다. 본 연구 결과를 종합해 보면, 시비량을 생장에 따라 조절함으로써 시비량을 줄이면서 동시에 비슷한 생장 및 생리적 반응을 보임을 알 수 있었다. Exponential 처리구는 50% 시비량으로 생장, 묘목품질지수 및 생리적특성에서큰차이를 보이지 않았으며, 규격묘 생산이 가능했다. 이는 낙엽송 용기묘 100만본 생산 시 비료량을 약 200kg 이상 줄일 수 있는 것으로, 시설양묘과정에서 다른 시비 방법에 비해 경제적인 효과를 얻을 수 있음과 동시에 양묘장 토양 및 계류수의 오염을 줄이면서 비슷한 생장을 유지할 수 있다. 즉, Exponential 시비 방법은 생산 비용을 줄이면서 비슷한 생장 효과 얻어 경제적이면서 친환경적 시비방법이라 판단된다.

Keywords

References

  1. Aranda, I., L. Gil, and J.A. Pardos. 2002. Physiological responses of Fagus sylvatica L. seedlings under Pinus sylvestris L. and Quercus pyrenaica Will. Overstories. For. Ecol. Manag. 162:153-164. https://doi.org/10.1016/S0378-1127(01)00502-3
  2. Arnon, D.I. 1949. Copper enzymes in isolated chloroplasts polyphenol-oxidase in Beat vulgaris. Plant Physiol. 24(1):1-15. https://doi.org/10.1104/pp.24.1.1
  3. Bayala, J., M. Dianda, J. Wilson, S.J. Ouedraogo, and K. Sanon. 2009. Predicting field performance of five irrigated tree species using seedling quality assessment in Burkina Faso, West Africa. New Forests 38(3):309-322. https://doi.org/10.1007/s11056-009-9149-4
  4. Bose, S., S.K. Herbert, and D.C. Fork. 1988. Fluorescence characteristics of photoinhibition and recovery in a sun and a shade species of the red algal genus Porphyra. Plant Physiol. 86(3):946-950. https://doi.org/10.1104/pp.86.3.946
  5. Broschat, T.K. 1995. Nitrate, phosphate, and potassium leaching from container-grown plants fertilized by several methods. Hort. Sci. 30(1):74-77.
  6. Bumgarner, M.L., K.F. Salifu, and D.F. Jacobs. 2008. Subirrigation of Quercus rubra seedlings: Nursery stock quality, media chemistry, and early field performance. Hort. Sci. 43(7):2179-2185.
  7. Chirino, E., A. Vilagrosa, E.I. Hernandez, A. Matos, and V.R. Vallejo. 2008. Effects of a deep container on morpho-functional characteristics and root colonization in Quercus suber L. seedlings for reforestation in Mediterrranean climate. For. Ecol. Manag. 256:779-785. https://doi.org/10.1016/j.foreco.2008.05.035
  8. Cho, M.S., S.W. Lee, B.B. Park, and G.S. Park. 2011. The Effects of Fertilization on Growth Performances and Physiological Characteristics of Liriodendron tulipifera in a Container Nursery System. J. Korean For. Soc. 100(2):305-313.
  9. Choi, Y.B. and J.H. Kim. 1995. Change in needle chlorophyll fluorescence of Pinus densiflora and Pinus thunbergii treated with artificial acid rain. J. Korean For. Soc. 84(1):97-102.
  10. Compton, J., L.S. Watrud, L.A. Porteus, and S. DeGrood 2004. Response of soil microbial biomass and community composition to chronic nitrogen additions at Harvard forest. For. Ecol. Manag. 196:143-158. https://doi.org/10.1016/j.foreco.2004.03.017
  11. Deans, J.D., W.L. Mason, M.G.R. Cannell, A.L. Sharpe, and L.J. Sheppard. 1989. Growing regimes for bareroot stock of Sitka spruce, Douglas fir and Scots pine. 1. Morphology at the end of the nursery phase. Forestry 62:53-60.
  12. Demmig, B. and O. Bjorkman. 1987. Comparison of the effect of excessive light on chlorophyll fluorescence (77 K) and photon yield of $O_2$ evolution in leaves of higher plants. Planta 171:171-184. https://doi.org/10.1007/BF00391092
  13. Dumroese, R.K., D.S. Page-Dumroese, K.F. Salifu, and D.F. Jacobs. 2005. Exponential fertilization of Pinus monticola seedlings:nutrient uptake efficiency, leaching fractions, and early outplanting performance. Can. J. For. Res. 35(12):2961-2967. https://doi.org/10.1139/x05-226
  14. Frey, S.D., M. Knorr, J.L. Parrent, and R.T. Simpson. 2004. Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests. For. Ecol. Manag. 196:159-171. https://doi.org/10.1016/j.foreco.2004.03.018
  15. Grossniclke, S.C. 2005. Importance of root growth in overcoming planting stress. New Forests 30:273-294. https://doi.org/10.1007/s11056-004-8303-2
  16. Hernandez, E.I., A. Vilagrosa, V.C. Luis, M. Llorca, E. Chirino, and V.R. Vallejo. 2009. Root hydraulic conductance, gas exchange and leaf water potential in seedlings of Pistacia lentiscus L. and Quercus suber L. grown under different fertilization and light regimes. Environ. Exp. Bot. 67:269-276. https://doi.org/10.1016/j.envexpbot.2009.07.004
  17. Hikosaka, K. and I. Terashima. 1995. A model of the acclimation of photosynthesis in the leaves of C3 plantsto sun and shade with respect to nitrogen uses. Plant, Cell Environ. 18:605-618. https://doi.org/10.1111/j.1365-3040.1995.tb00562.x
  18. Hiscox, J.D. and G.F. Israelstam. 1978. A method for the extraction of chlorophyll from leaf tissue without maceration. Can. J. Bot. 57:1332-1334.
  19. Hughes, A.P. and P.R. Freeman. 1967. Growth analysis using frequent small harvests. J. App. Ecol. 4:553-560. https://doi.org/10.2307/2401356
  20. Imo, M. and V.R. Timmer. 1999. Vector competition analysis of black spruce seedling responses to nutrient loading and vegetation control. Can. J. For. Res. 29(4):474-486. https://doi.org/10.1139/x99-020
  21. Juntunen, M.-L., T. Hammar, and R. Rikala. 2003. Nitrogen and phosphorus leaching and uptake by container birch seedlings (Betula pendula Roth) grown in three different fertilizations. New Forests 25(2):133-147. https://doi.org/10.1023/A:1022686402578
  22. Korea Forest Service (KFS). 2011. The plan of primary task in 2011. KFS. p. 456.
  23. Kim, J.J., K.H. Son, and T.S. Yoon. 2008. Optimum management for overwintering of Pinus densiflora container seedlings. J. Korean For. Soc. 97(1):53-60.
  24. Kim, J.J., K.J. Lee, K.S. Song, Y.G. Cha, Y.S. Chung, J.H. Lee, and T.S. Yoon. 2010a. Exploration of optimum container for production of Larix leptolepsis container seedlings. J. Korean For. Soc. 99(4):638-644.
  25. Kim, P.G. and E.J. Lee. 2001. Ecophysiology of photosynthesis 1 : Effects of light intensity and intercellular $CO_2$ pressure on photosynthesis. Korean J. Agr. For. Mete. 3(2):126-133.
  26. Kim, P.G., K.W. Kwon, T.S. Yoon, K.J. Lee, Y.S. Chung, K.S. Song, Y.G. Cha, and J.J. Kim. 2010b. Damages of seedlings by meteorological disasters in nursery. Korean J. Clim. Res. 5(2):148-163.
  27. Krause, G.H. and E. Weis. 1991. Chlorophyll fluorescence and photosynthesis; The basics. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42:313-349. https://doi.org/10.1146/annurev.pp.42.060191.001525
  28. Kwon, K.W., M.S. Cho, G.N. Kim, S.W. Lee, and K.H. Jang. 2009. Photosynthetic characteristics and growth performances of containerized seedling and bare root seedling of Quercus acutissima growing at different fertilizing schemes. J. Korean For. Soc. 98(3):331-338.
  29. Lambers, H. and H. Poorter. 1992. Inherent variation in growth rate between higher plants: a search for physiological causes and ecological consequences. Adv. Ecol. Res. 23:187-261.
  30. Lee, S.W., J.H. Choi, S.K. Yoo, S.K. Kim, J.H. Bae, and H.S. Kyo. 2006. Effect of raw material properties on growth characteristics of broad-leaved container seedlings. J. Bio-Environ. Control 15(3):244-249.
  31. Leiva, M.J. and R. Fernandez-Ales. 1998. Variability in seedling water status during drought within a Quercus Ilex subsp. ballota population, and its relation to seedling morphology. For. Ecol. Manag. 111:147-156. https://doi.org/10.1016/S0378-1127(98)00320-X
  32. Lloret, F., C. Casanovas, and J. Penuelas. 1999. Seedling survival of Mediterranean shrubland species in relation to root:shoot ratio, seed size and water and nitrogen use. Funct. Ecol. 13(2):210-216. https://doi.org/10.1046/j.1365-2435.1999.00309.x
  33. Luis, V.C., J. Puertolas, J. Climent, J. Peters, A.M. Gonzalez-Rodriguez, D. Morales, and M.S. Jimenez. 2009. Nursery fertilization enhances survival and physiological status in Canary Island pine (Pinus canariensis) seedlings planted in a semiarid environment. Euro. J. For. Res. 128(3):221-229. https://doi.org/10.1007/s10342-009-0257-7
  34. Mackinney, G. 1941. Absorption of light by chlorophyll solution. J. Biol. Chem. 140: 315-322.
  35. Oliet, J., R. Planelles, F. Artero, R. Valverde, D. Jacobs, and M.L. Segura. 2009. Field performance of Pinus halepensis planted in Mediterranean arid conditions: relative influence of seedling morphology and mineral nutrition. New Forests 37(3):313-331. https://doi.org/10.1007/s11056-008-9126-3
  36. Qu, L.Y., A.M. Quoreshi, and T. Koike. 2003. Root growth characteristics, biomass and nutrient dynamics of seedlings of two larch species raised under different fertilization regimes. Plant and Soil 255:293-302.
  37. Rascher, U., M. Liebig, and U. Lüttge. 2000. Evaluation of instant light-response curves of chlorophyll fluorescence parameters obtained with a portable chlorophyll fluorometer on site in the field. Plant, Cell Environ. 23(12):1397-1405. https://doi.org/10.1046/j.1365-3040.2000.00650.x
  38. Rural Development Administration (RDA). 2002. Standard analysis of media. Rural Development Administration. p. 191.
  39. Salifu, K.F. and V.R. Timmer. 2003. Optimizing nitrogen loading in Picea mariana seedlings during nursery culture. Can. J. For. Res. 33(7):1287-1294. https://doi.org/10.1139/x03-057
  40. SAS Institute Inc. 2000. SAS/STAT TM Guide for Personal Computer. Version 8 Edition. SAS Institute Inc., N.C. p. 1026.
  41. Sestak, Z., J. Catsk, and P. G. Jarvis. 1971. Plant Photosynthetic Production Manual of Methods. The Hague. Hertogenbosch. p. 818.
  42. Timmer, V.R. 1997. Exponential nutrient loading: a new fertilization technique to improve seedling performance on competitive sites. New Forests 13:279-295. https://doi.org/10.1023/A:1006502830067
  43. Thirukkumaran, C.M. and D. Parkinson. 2002. Microbial activity, nutrient dynamics and litter decomposition in a Canadian Rocky Mountain pine forest as affected by N and P fertilizers. For. Ecol. Manag. 159:187-201. https://doi.org/10.1016/S0378-1127(01)00432-7
  44. Trubat, R., J. Cortina, and A. Vilagrosa. 2008. Shortterm nitrogen deprivation increases field performance in nursery seedlings of Mediterranean woody species. J. Arid Environ. 72(6):879-890. https://doi.org/10.1016/j.jaridenv.2007.11.005
  45. Tsakaldimi, M., T. Zagas, T. Tsitsoni, and P. Ganatsas. 2005. Root morphology, stem growth and field performance of seedlings of two Mediterranean evergreen oak species raised in different container types. Plant and Soil 278:85-93. https://doi.org/10.1007/s11104-005-2580-1
  46. Way, D., S. Seegobin, and R. Sage. 2007. The effect of carbon and nutrient loading during nursery culture on the growth of black spruce seedlings: a six-year field study. New Forests 34(3):307-312. https://doi.org/10.1007/s11056-007-9053-8
  47. Wilson, E.D., K.C. Vitols, and A. Park. 2007. Root characteristics and growth potential of container and bare-root seedlings of red oak (Quercus rubra L.) in Ontario, Canada. New Forests 34(2):163-176. https://doi.org/10.1007/s11056-007-9046-7