Browse > Article
http://dx.doi.org/10.7845/kjm.2017.7011

Phylogenetic diversity of bacterial communities in a gray solar saltern and isolation of extremely halophilic bacteria using culturomics  

Cho, Geon-Yeong (Department of Microbial & Nano Materials, College of Science & Technology, Mokwon University)
Han, Song-Ih (Department of Microbial & Nano Materials, College of Science & Technology, Mokwon University)
Whang, Kyung-Sook (Department of Microbial & Nano Materials, College of Science & Technology, Mokwon University)
Publication Information
Korean Journal of Microbiology / v.53, no.1, 2017 , pp. 29-38 More about this Journal
Abstract
In this study, we investigated the phylogenetic diversity of the bacterial community and isolation of extremely halophilic bacteria using culturomics in a gray solar saltern. The number of bacterial living cells, enumerated in a gray solar saltern by direct fluorescence microscopy was three to four orders of magnitude greater than those enumerated by plate counts, suggesting the distribution of 'viable but non-culturable bacteria'. The biodiversity of bacterial communities in a gray solar saltern was investigated by pyrosequencing, 1,778 OTUs of bacteria were comprised of 18 phyla 46 classes 85 orders 140 families 243 genera with 6.16 diversity index. Archaea communities were composed of 3 phyla 6 classes 7 orders 7 families 38 genera with 4.95 diversity index from 643 OTUs. Totally 137 isolates were isolated by 59 different cultural methods based on culturomics considering culture media and conditions suitable for the growth of extremely halophilic bacteria. Phylogenetic analyses of extremely halophilic isolates based on 16S rRNA gene sequences, extremely halophilic isolates were composed of 4 phyla and 11 genera. Haloterrigena and Haloferax can be successfully isolated from culturomics. These culturomics were effective methods for collection of diversity of extremely halophilic bacteria.
Keywords
culturomics; extremely halophile; gray solar saltern; pyrosequencing;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Ben-Amotz, A. and Avron, M. 1989. The biotechnology of mass culturing Dunaliella for products of commercial interest, pp. 91-114. In Cresswell, R.C., Rees, T.A.V., and Shah, N. (eds.), Algal and cyanobacteiral Biotechnology. Longman Scientific and Technical Press.
2 Chun, J., Kim, K.Y., Lee, J.H., and Choi, Y. 2010. The analysis of oral microbial communities of wild-type and toll-like receptor 2-deficient mice using a 454 GS FLX Titanium pyrosequencer. BMC Microbiol. 10, 101-108.   DOI
3 Cole, J.R., Wang, Q., Cardenas, E., Fish, J., Chai, B., Farris, R.J., Kulam-Syed-Mohideen, A.S., McGarrell, D.M., Marsh, T., Garrity, G.M., et al. 2009. The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37, 141-145.
4 DeLong, E.F. 1992. Archaea in coastal marine environments. Proc. Natl. Acad. Sci. USA 89, 5685-5689.   DOI
5 Edgar, R.C., Haas, B.J., Clemente, J.C., Quince, C., and Knight, R. 2011. Uchime improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194-2200.   DOI
6 Eichler, J. 2000. Novel glycoproteins of the halophilic archaeon Haloferax volcanii. Arch. Microbiol. 173, 445-448.   DOI
7 Jiang, Y.X., Wu, J.G., Yu, K.Q., Ai, C.X., Zou, F., and Zhou, H.W. 2011. Integrated lysis procedures reduce extraction biases of microbial DNA from mangrove sediment. J. Biosci. Bioeng. 111, 153-157.   DOI
8 Kamekura, M. 1986. Production and function of enzymes from eubacterial halophiles. FEMS Microbiol. Rev. 39, 145-150.   DOI
9 Kim, H.N. 2012. The structure of microbial communities at solar saltern in Korea as revealed by pyrosequeincing of 16S rRNA genes. 51. BS thesis. Graduate School, Hankuk Univ. Foreign, Korea.
10 Lagier, J.C., Armougom, F., Million, M., Hugon, P., Pagnier, I., Robert, C., Bittar, F., Fournous, G., Gimenez, G., Maraninchi, M., et al. 2012. Microbial culturomics: paradigm shift in the human gut microbiome study. Clin. Microbiol. Infect. 18, 1185-1193.   DOI
11 Lee, K.D., Park, J.W., Choi, C.R., Song, H.W., Yun, S.K., Yang, H.C., and Ham, K.S. 2007. Salinity and heavy metal contents of solar salts produced in Jeollanamdo province of Korea. Korean J. Food Sci. Nutr. 36, 753-758.   DOI
12 Li, W. and Godzik, A. 2006. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658-1659.   DOI
13 Park, S.H. and Lee, G.H. 2015. Diversity and identification of halophilic bacteria by pyrosequencing in a solar salterns of Jeungdo, Korea. Korean J. Nat. Conservation 9, 149-156.   DOI
14 Oren, A. 2008. Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Systems 4, 2.   DOI
15 Oren, A. 2015. Halophilic microbial communities and their environments. Curr. Opin. Biotechnol. 33, 119-124.   DOI
16 Park, J.W., Kim, S.J., Kim, S.H., Kim, B.H., Kang, S.G., Nam, S.H., and Jung, S.T. 2000. Determination of mineral and heavy metal contents of various salts. Korean J. Food Sci. Technol. 32, 1442-1445.
17 Park, J.S., Whang, K.S., and Cheon, J.S. 2005. Procedure of microbial classification and identification. Worldscience. Korea.
18 Koh, H.W., Kim, S.J., Rhee, S.K. and Park, S.J. 2015. Isolation and characterization analysis of the halophilic archaea isolated from solar saltern, Gomso. Korean J. Microbiol. 51, 427-434.   DOI
19 Perez-Pomares , F., Bautista, V., Ferrer, J., Pire , C., Marhuenda-Egea, F.C., Bonete, M.J. 2003. Alpha-amylase activity from the halophilic archaeon Haloferax mediterranei. Extremophiles 7, 299-306   DOI
20 Pastor, J.M., Bernal, V., Salvador, M., Argandona, M., Vargas, C., Csonka, L., Sevilla, A., Iborra, J.L., Nieto, J.J., and Canovas, M., et al. 2013. Role of central metabolism in the osmoadaptation of the halophilic bacterium Chromohalobacter salexigens. J. Biol. Chem. 288, 17769-17781.   DOI
21 Santorelli, M., Maurelli, L., Pocsfalvi, G., Fiume, I., Squillaci, G., La Cara, F., Del Monaco, G., and Morana, A. 2016. Isolation and characterisation of a novel alpha-amylase from the extreme haloarchaeon Haloterrigena turkmenica. Int. J. Biol. Macromol. 92, 174-184.   DOI
22 Pfluger, K., Baumann, S., Gottschalk, G., Lin, W., Santos, H., and Muller, V. 2003. Lysine-2, 3-aminomutase and ${\beta}$-lysine acetyltransferase genes of methanogenic Archaea are salt induced and are essential for the biosynthesis of NE-acetyl-${\beta}$-lysine and growth at high salinity. Appl. Environ. Microbiol. 69, 6047-6055.   DOI
23 Qian, P.Y., Wang, Y., Lee, O.O., Lau, S.C.K., Yang, J.K., Lafi, F.F., Al-Suwailem, A., and Wong, T.Y.H. 2011. Vertical stratification of microbial communities in the Red sea revealed by 16S rDNA pyrosequencing. ISME J. 5, 507-518.   DOI
24 Quince, C., Lanzen, A., Davenport, R.J., and Turnbaugh, P.J. 2011. Removing noise from pyrosequenced amplicons. BMC Bioinformatics 12, 38.   DOI
25 Saum, R., Mingote, A., Santos, H., and Muller, V. 2009. A novel limb in the osmoregulatory network of Methanosarcina mazei Go1: Ne-acetyl-${\beta}$-lysine can be substituted by glutamate and alanine. Environ. Microbiol. 11, 1056-1065.   DOI
26 Weisburg, W.G., Barns, S.M., Pelletier, D.A., and Lane, D.J. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173, 697-703.   DOI
27 Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B., Lesniewski, R.A., Oakley, B.B., Parks, D.H., Robinson, C.J., et al. 2009. Introducing mothur: open-source, platform-independent, community supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537-7541.   DOI
28 Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B., and Ideker, T. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498-2504.   DOI
29 Ventosa, A., de la Haba, R.R., Sanchez-Porro, C., and Papke, R.T. 2015. Microbial diversity of hypersaline environments: a metagenomic approach. Curr. Opin. Microbiol. 25, 80-87.   DOI
30 Whang, K.S., Yang, H.C., and Someya, T. 2003. The detection and a quantitative evaluation of viable but non-culturable soil bacteria using a modified direct viable count method. Korean J. Microbiol. 39, 181-186.