• 제목/요약/키워드: fluorescence dyes

검색결과 70건 처리시간 0.011초

고강도/고분자량 폴리에틸렌 섬유의 적색 초소수성 형광염료 염색 (Dyeing of High Strength and High Molecular Weight Polyethylene Fiber Using Super Hydrophobic Red Fluorescence Dyes)

  • 김태건;이준헌;박지훈;김태경
    • 한국염색가공학회지
    • /
    • 제30권4호
    • /
    • pp.237-244
    • /
    • 2018
  • Three super hydrophobic red fluorescence dyes were selected to dye high molecular weight polyethylene fiber. Their absorbance and emission spectra were obtained and Stokes' shift was measured. Fluorescence emission strength of the dyes on the fiber was investigated and therefore Fluoro Red 3 was determined as the best one among those three dyes in this experiment. Dyeing properties and fluorescence intensities were investigated using the Fluoro Red 3 on high molecular weight polyethylene fiber at various dyeing conditions. The optimum concentration of a dispersing agent was appeared at 10wt% in aqueous solution. The best dyeing was obtained at $125^{\circ}C$ for 1 hour. The color fastnesses to the washing and rubbing were as high as ratings 4~5, however, the fastness to light was exhibited ratings 2~3.

Gold Nanoparticle-Based Detection of Hg(II) in an Aqueous Solution: Fluorescence Quenching and Surface-Enhanced Raman Scattering Study

  • Ganbold, Erdene-Ochir;Park, Jin-Ho;Ock, Kwang-Su;Joo, Sang-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권2호
    • /
    • pp.519-523
    • /
    • 2011
  • We studied the detection of the Hg(II) concentration in an aqueous solution using rhodamine dyes on citrate-reduced Au nanoparticles (NPs). The quenching effect from Au NPs was found to decrease as the Hg(II) concentration increased under our experimental conditions. As the fluorescence signals intensified, the surface-enhanced Raman scattering (SERS) intensities reduced on the contrary due to less rhodamine dyes on Au NPs as the Hg(II) concentration increased. The rhodamine 6G (Rh6G) and rhodamine 123 (Rh123) dyes were examined via fluorescence and SERS measurements depending on Hg(II) concentrations. Fast and easy fluorescence detection of an Hg (II) concentration as low as a few ppm could be achieved by naked eye using citrate-reduced Au NPs.

초소수성 형광염료에 의한 고강도/고분자량폴리에틸렌섬유의 염색 (Dyeing of High Strength and High Molecular Weight Polyethylene Fiber Using Super Hydrophobic Fluorescence Dyes)

  • 김태경;박지훈;이준헌;김태건
    • 한국염색가공학회지
    • /
    • 제29권4호
    • /
    • pp.223-230
    • /
    • 2017
  • Three super hydrophobic fluorescence dyes were selected to dye high molecular weight polyethylene fiber and their molar absorptivity, emission spectrum, and quantum yield were measured. From the results of color strength on the fiber, all the three dyes exhibited linear increase according to the dye concentration and Fluoro3 dye showed the highest color strength among them. Emission strength of the fluorescence dyes on the fiber was investigated according to the dye concentrations. The emission was increased with the increase of the dye concentration at relatively low dye concentration and then after showing the maximum emission strength the emission was decreased at higher dye concentrations. The highest emission was obtained in Fluoro2 dye. Color fastness to washing and rubbing was generally good enough, however, especially to light, only Fluoro3 dye exhibited rating 3 acceptable practically and Fluoro1 and 2 was ratings 1 which is unacceptable level.

CdS Nanoparticles as Efficient Fluorescence Resonance Energy Transfer Donors for Various Organic Dyes in an Aqueous Solution

  • Ock, Kwang-Su;Ganbold, Erdene-Ochir;Jeong, Sae-Ro-Mi;Seo, Ji-Hye;Joo, Sang-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권10호
    • /
    • pp.3610-3613
    • /
    • 2011
  • CdS nanoparticles (NPs) were synthesized in an aqueous phase in order to investigate their spectral behaviors as efficient fluorescence resonance energy transfer (FRET) donors for various organic dye acceptors. Our prepared CdS NPs exhibiting strong and broad emission spectra between 480-520 nm were able to transfer energy in a wide wavelength region from green to red fluorescence dyes. Rhodamine 6G (Rh6G), rhodamine B (RhB), and sulforhodamine 101 acid (Texas red) were tested as acceptors of the energy transfer from the CdS NPs. The three dyes and synthesized CdS NPs exhibited good FRET behaviors as acceptors and donors, respectively. Energy transfers from the CdS NPs and organic Cy3 dye were compared to the same acceptor Texas red dye at different concentrations. Our prepared CdS NPs appeared to exhibit better FRET behaviors comparable to those of the Cy3 dye. These CdS NPs in an aqueous solution may be efficient FRET donors for various organic dyes in a wide wavelength range between green and red colors.

플루오레세인 유도체를 갖는 잔틴계 염료의 형광안료 제조로의 응용 및 제조된 안료의 광학 특성 분석 (Application of Xanthene Dyes with Fluorescein-Derived Structures for Production of Fluorescent Pigments, and The Analysis of The Optical Properties of The Pigments)

  • 배수환
    • 대한화장품학회지
    • /
    • 제44권3호
    • /
    • pp.303-316
    • /
    • 2018
  • 플루오레세인 구조를 갖는 잔틴계 염료의 형광안료로의 응용 가능성 및 제조되는 안료들의 광학 특성 조절 가능성을 확인하기 위하여 본 연구를 진행하였다. 안료 제조에는 수용성 잔틴계 염료인 eosin Y (D&C Red No.22), phloxine B (D&C Red No.28)를 주로 사용하였으며, 염료를 용매에 용해시켜 분체와 분산, 교반하고 이를 건조시켜 분쇄함으로써 안료를 제조 하였고, 제조된 안료들에 대해서는 형광과 관련한 광학 특성을 측정하였다. 사용한 용매의 종류, 염료의 함량, 그리고 염료의 혼합 투입 비율에 따라서 안료의 광학적 특성이 변함을 관찰하였다. 실험 결과에 따르면, 분체에 흡착된 염료 중 일부분이 형광 발색을 하며, 나머지는 형광에 기여하지 않는 것으로 보인다. 안료를 구성하는 분체-염료 계 내부의 결합 (혹은 상호작용) 세기와 그 특성을 파악하기 위한 안료 수세실험 결과, 안료 계 내에는 서로 다른 2개 이상의 상호작용이 존재하며, 그 중 하나는 용매-염료 상호작용보다 비교적 강하였다.

형광물질을 이용한 염료감응태양전지의 효율향상 (Enhancement of Photovoltaic Performance of Fluorescence Materials added TiO2 electrode in Dye-sensitized Solar Cells)

  • 천종훈;이정관;정미란;김재홍
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.88.2-88.2
    • /
    • 2010
  • Dye-sensitized solar cells (DSSCs) have attracted considerable attention on account of their high solar energy-to-conversion efficiencies and low cost processes compared to conventional p-n junction solar cells. The mechanism of DSSC is based on the injection of electrons from the photo excited dyes into the conduction band of the semiconductor electrode. The oxidized dye is reduced by the hole injection into either the hole conductor or the electrolyte. Thus, the light harvesting effect of dye plays an important role in capturing the photons and generating the electron/hole pair, as well as transferring them to the interface of the semiconductor and the electrolyte, respectively. We used the organic fluorescence materials which can absorb short wavelength light and emit longer wavelength region where dye sensitize effectively. In this work, the DSSCs were fabricated with fluorescence materials added $TiO_2$ photo-electrode which were sensitized with metal-free organic dyes. The photovoltaic performances of fluorescence aided DSSCs were compared, and the recombination dark current curves and the incident photon-to-current (IPCE) efficiencies were measured in order to characterize the effects of the additional light harvesting effect in DSSC. Electro-optical measurements were also used to optimize the fluorescence material contents on TiO2 photo-electrode surface for higher conversion efficiency (${\eta}$), fill factor (FF), open-circuit voltage (VOC) and short-circuit current (ISC). The enhanced light harvesting effect by the judicious choice/design of the fluorescence materials and sensitizing dyes permits the enhancement of photovoltaic performance of DSSC.

  • PDF

Photoisomerization of Symmetric Carbocyanines

  • 민형식;강유남;박정희
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권7호
    • /
    • pp.747-753
    • /
    • 1998
  • The phoisomerization process of symmetric carbocyanine dyes such as 3,3'-diethyloxadicarbocyanine iodide (DODCI), 3,3'-diethylthiadicarbocyanine iodide (DfDCI), 1,1'-diethyl-2,2'-dicarbocyanine iodide (DDI), 1,1'-diethyl-2,2'-carbocyanine iodide (DCI), and cryptocyanine (1,1'-diethyl-4,4'-carbocyanine) iodide (CCI) have been studied by measuring the steady state and time resolved fluorescence spectra and the ground-state recovery profiles. The steady-state fluorescence spectrum of photoisomer as a function of concentration and excitation wavelength provides the evidence that the fluorescence of photoisomer is formed by the radiative energy transfer from the normal form and the quantum yield for the formation of photoisomer is increased by decreasing the excitation wavelength. The fluorescence decay profiles have been measured by using the time correlated single photon counting (TCSPC) technique, showing a strong dependence on the concentration and the detection wavelength, which is due to the formation of excited photoisomers produced either by the radiative energy transfer from the non-nal form or by absorbing the 590 nm laser pulse. We first report the fluorescence decay time of photoisomers for these cyanine dyes. The experimental results are explained by introducing the semiempirical calculations. The ground state recovery profiles of DTDCI, DDI, and CCI normal forms have been measured, showing that the recovery time from the singlet excited state is similar with the fluorescence decay time.

미세 성형 방법을 이용한 형광 표지된 이중 분획 입자의 제조 (Fabrication of Fluorescent Labeled Bi-compartmental Particles via the Micromolding Method)

  • 심규락;정성근;홍우경;강경구;이창수
    • Korean Chemical Engineering Research
    • /
    • 제56권6호
    • /
    • pp.826-831
    • /
    • 2018
  • 본 연구는 다중 형광이 표지된 이중 분획 입자의 제조에 관한 것이다. 입자 내에서 형광 발현을 분획화하기 위하여, 형광의 여기 및 방출 스펙트럼의 중첩이 적은 두가지의 형광 염료를 선정한다. 또한, 형광 안정성을 확보하기 위하여 선정된 형광 염료는 입자를 구성하는 소재와 함께 가교될 수 있도록 분자 내에 아크릴레이트(acrylate) 작용기를 포함한다. 공초점 현미경 촬영을 통하여 선정된 형광 물질을 이용하여 제조된 입자에서 강한 형광 발현 및 형광의 분획화를 확인하였다. 더 나아가 4주 동안 형광 발현 및 세기를 측정하여 장기간의 형광 안정성을 검증하였다. 본 연구에서 제조된 다중 형광 표지된 이중 분획 입자는 다중 표적형 약물 전달 체계, 3차원 브라운 운동의 해석 연구, 3차원의 복잡한 자기 조립체 형상의 규명 연구 등에 널리 활용될 수 있으리라 기대한다.

Rhodamine 6G Based New Fluorophore Chemosensor Toward Hg2+

  • Son, Young-A;Park, June-Min
    • 한국염색가공학회지
    • /
    • 제24권3호
    • /
    • pp.158-164
    • /
    • 2012
  • Rhodamine dyes belong to xanthene family has excellent photostability and photophysical properties. In rhodamine dyes, Rhodamine 6G and its precursors also have xanthene chromophore and it shows high fluorescent quantum yield. Rhodamine 6G derivates are simple to synthesis and its high sensitivity and water solubility are suitable as good chemosensor. In this regard, Rhodamine 6G derivates which have selectivity to specific metal cation can used to detect various heavy metal ions. In this study, rhodamine 6G derivatives were synthesized by reaction of rhodamine 6G hydrazide and glyoxal and 4-phenyl thiosemicarbazide and it showed colorimetric and fluorescence sensing toward $Hg^{2+}$ ion. This novel chemosensor was analyzed and measured on UV-Vis and fluorescence spectrophotometer. HOMO/LUMO values were also calculated by computational calculation.