• Title/Summary/Keyword: fluorescence detection

Search Result 602, Processing Time 0.034 seconds

Fluorescence Characteristic Spectra of Domestic Fuel Products through Laser Induced Fluorescence Detection

  • Wu, Ting-Nien;Chang, Shui-Ping;Tsai, Wen-Hsien;Lin, Cian-Yi
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.5
    • /
    • pp.18-25
    • /
    • 2014
  • Traditional investigation procedures of soil and groundwater contamination are followed by soil gas sampling, soil sampling, groundwater sampling, establishment of monitoring wells, and groundwater monitoring. It often takes several weeks to obtain the analysis reports, and sometimes, it needs supplemental sampling and analysis to delineate the polluted area. Laser induced fluorescence (LIF) system is designed for the detection of free-phase petroleum pollutants, and it is suitable for on-site real-time site investigation when coupling with a direct push testing tool. Petroleum products always contain polycyclic aromatic hydrocarbon (PAH) compounds possessing fluorescence characteristics that make them detectable through LIF detection. In this study, LIF spectroscopy of 5 major fuel products was conducted to establish the databank of LIF fluorescence characteristic spectra, including gasoline, diesel, jet fuel, marine fuel and low-sulfur fuel. Multivariate statistical tools were also applied to distinguish LIF fluorescence characteristic spectra among the mixtures of selected fuel products. This study successfully demonstrated the feasibility of identifying fuel species based on LIF characteristic fluorescence spectra, also LIF seemed to be uncovered its powerful ability of tracing underground petroleum leakages.

Hyperspectral Fluorescence Imaging for Mouse Skin Tumor Detection

  • Kong, Seong G.;Martin, Matthew E.;Vo-Dinh, Tuan
    • ETRI Journal
    • /
    • v.28 no.6
    • /
    • pp.770-776
    • /
    • 2006
  • This paper presents a hyperspectral imaging technique based on laser-induced fluorescence for non-invasive detection of tumorous tissue on mouse skin. Hyperspectral imaging sensors collect image data in a number of narrow, adjacent spectral bands. Such high-resolution measurement of spectral information reveals contiguous emission spectra at each image pixel useful for the characterization of constituent materials. The hyperspectral image data used in this study are fluorescence images of mouse skin consisting of 21 spectral bands in the visible spectrum of the wavelengths ranging from 440 nm to 640 nm. Fluorescence signal is measured with the use of laser excitation at 337 nm. An acousto-optic tunable filter (AOTF) is used to capture images at 10 nm intervals. All spectral band images are spatially registered with the reference band image at 490 nm to obtain exact pixel correspondences by compensating the spatial offsets caused by the refraction differences in AOTF at different wavelengths during the image capture procedure. The unique fluorescence spectral signatures demonstrate a good separation to differentiate malignant tumors from normal tissues for rapid detection of skin cancers without biopsy.

  • PDF

Miniature Fluorescence Detection System for Protein Chips by Prism (프리즘을 이용한 소형 단백질칩 분석 형광측정 시스템 개발)

  • Choi, Jae-Ho;Kim, Ho-Seong;Lee, Kook-Nyung;Kim, Eun-Mi;Kim, Yong-Kweon;Kim, Byung-Gee
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.2040-2042
    • /
    • 2004
  • This paper presents a miniature optical system for the fluorescence detection of the patterned protein chip. The patterned protein chip was fabricated using MEMS process. The fluorescence from the patterned protein chip was measured while varying the concentration of the BSA. The fluorescence light is separated spatially from the excitation beam using mini-size prism to increase SNR (Signal-to-Noise Ratio). The combination of prism and mirrors can convert the excitation light from the laser diode to uniform illumination on the specimen. We believe that the proposed system for fluorescence detection can be applied to rea1ization of point-of-care.

  • PDF

In Situ Fluorescence Optical Detection Using a Digital Micromirror Device (DMD) for 3D Cell-based Assays

  • Choi, Jong-Ryul;Kim, Kyujung;Kim, Donghyun
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.42-46
    • /
    • 2012
  • We have developed a fluorescence optical detection system using a digital micromirror device (DMD) for monitoring 3D cell culture matrices in situ. Full 3D imaging with fast scanning speed was implemented by the combined action of a DMD and a motorized stage. Imaging results with fluorescent microbeads measure the minimum axial resolution of the system as $6.3{\mu}m$, while full 1-mm scanning through 3D alginate-based matrix was demonstrated. For cell imaging, improved images were obtained by removing background fluorescence although the scanning distance was reduced because of low intracellular fluorescence efficiency. The system is expected to be useful to study various dynamics and behaviors of 3-dimensionally cultured cells in microfluidic systems.

DETECTION OF PROXIMAL CARIES USING LASER FLUORESCENCE (레이저 형광법을 이용한 인접면 우식증 탐지효과)

  • Mo, Kyung-Hee;Yoon, Jung-Hoon;Kim, Su-Gwan;Lee, Sang-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.31 no.2
    • /
    • pp.323-330
    • /
    • 2004
  • The purpose of this study was to evaluate the diagnostic validity of early proximal caries lesions using laser fluorescence and whether the detection could be enhanced using a fluorescent dye. Direct visual examination and bitewing radiograph were used for comparison. The subjects of this study were 30 children of $3{\sim}9$ years old. Laser fluorescence and dye-enhanced laser fluorescence(mixed wavelength of 488 and 514 nm) were used and viewed through glasses(excluding wavelength<520 nm). For dye-enhanced laser fluorescence a 0.075% sodium fluorescein dye was applied before examination. Proximal caries lesion of each subject was assessed using visual examination, bitewing radiograph, laser fluorescence, and dye-enhanced laser fluorescence. The results in the three detection methods were compared to the assessment of bitewing radiograph. The results from the present study can be summarized as follows: 1. There was highly correlation(r=0.725-0.911) between the bitewing radiograph and all three detection methods(p<0.05) 2. The reproducibility(kappa value) of the visual examination, laser fluorescence and dye-enhanced laser fluorescence comparing with bitewing radiograph of proximal caries was 0.451, 0.683, 0.772, respectively. There was highest correlation between dye-enhanced laser fluorescence and bitewing radiograph for detection of proximal caries. The results from this study indicated that the dye-enhanced laser fluorescence considered to be accurate and reliable method in detecting proximal caries.

  • PDF

The performance of Bio-aerosol Detection System (BDS) with 405 nm laser diode (405 nm 광원을 이용한 생물입자탐지기의 에어로졸 분석성능)

  • Jeong, Young-Su;Chong, Eugene;Lee, Jong-Min;Choi, Kibong
    • Particle and aerosol research
    • /
    • v.13 no.1
    • /
    • pp.25-31
    • /
    • 2017
  • This paper offer the characteristics for the detection and classification of biological and non-biological aerosol particles in the air by using laser-induced-fluorescence (LIF) based Bio-aerosol Detection System (BDS). The BDS is mainly consist of an optical chamber, in-outlet nozzle system, 405 nm diode laser, an avalanche photo detector (APD) for scattering signal and photomultiplier tubes (PMT) for fluorescence signals in two different wavelength range ; F1, 510-600 nm and F2, 435-470 nm. The detection characteristics, especially ratio of fluorescence signal intensity were examined using well-known components : polystylene latex (PSL), fluorescence PSL, $2{\mu}m$ of SiO2 micro sphere, dried yeast, NADH, ovalbumin, fungicide powder and standard dust. The results indicated that the 405 nm diode laser-based LIF instrument can be a useful bio-aerosol detection system for unexpected biological threaten alter in real-time to apply for dual-use technology in military and civilian fields.

Use of laser fluorescence device 'DIAGNODent$^{(R)}$' for detecting caries (레이저 우식진단기기 'DIAGNODent$^{(R)}$'의 활용)

  • Lee, Byoung-Jin
    • The Journal of the Korean dental association
    • /
    • v.49 no.8
    • /
    • pp.461-471
    • /
    • 2011
  • The detection of carious lesions is a key point to apply appropriate preventive measures or operative treatment of dental caries. A laser fluorescence device DIAGNOdent$^{(R)}$ (KaVo, Biberach, Germany) has also been shown to be of additional clinical value in the detection of initial caries. This report focus on the DIAGNOdent$^{(R)}$ for caries detection. DIAGNOdent$^{(R)}$ irradiate visible red light at a wavelength of 655 nm to elicit near-infrared fluorescence from caries lesion. This device is known as a reproducible method for caries detection, with good sensitivity and specificity especially for caries detection on occlusal and accessible smooth surfaces. DIAGNOdent$^{(R)}$ tended to be more sensitive method of detecting occlusal dentinal caries, however, showed more false-positive diagnoses than the visual inspection. So Clinician should not use the device as a clinician's primary diagnostic method and it is recommended that the device should be used in the decision-making process in relation to the diagnosis of caries as a second opinion in cases of doubt after visual inspection. The trend of modern dentistry would be a preventive approach rather than invasive treatment of the disease. This is possible only with early detection and respective preventive measures, DIAGNOdent$^{(R)}$ can help the changes.

Fluorescence Immunoassy of HDL and LDL Using Protein A LB Film

  • Choi, Jeong-Woo;Park, Jun-Hyo;Lee, Woo-Chang;Oh, Byung-Keun;Min, Jun-Hong;Lee, Won-Hong
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.6
    • /
    • pp.979-985
    • /
    • 2001
  • A fluorometric detection technique for HDL (High Density Lipoprotein) and LDL (Low Density Lipoprotein) was developed for application in a fiber-optic immunosensor using a protein A Langmuir-Blodgget (LB) film. For the fluorescence immunoassay, antibodies specific to HDL or LDL were imobilied on the protein A LB film, and a fluorescence amplification method was developed to overcome their weak fluorescence. The deposition of protein A using the LB technique was monitored using a surface pressure-are $({\pi}-A)$ curve, and the antibody immobilization of the protein A LB film was experimentally verified. The immobilized antibody was used to separate only HDL and LDL from a sample, then the fluorescence of he separated HDL or LDL was amplified. The amount of LDL or HDL was measured using the developed fiber optic fluorescence detection system. The optical properties resulting from the reaction of HDL or LDL with o-phtaldialdehyde, detection range, response time, and stability of the immunoassay were all investigated. The respective detection ranges for HDL and LDL were sufficient to diagnose the risk of coronary heart disease. The amplification step increased the sensitivity, while selective separation using the immobilized antibody led to linearity in the sensor signal. The regeneration of the antibody-immobilized substrate could produce a stable and reproducible immunosensor.

  • PDF

Development of Photo-diode for LOC fluorescence detector (LOC 형광검출 소자를 위한 광 다이오드의 제작 및 특성 평가)

  • Kim, Ju-Hwan;Shin, Kyeong-Sik;Kim, Yong-Kook;Kim, Sang-Sik;Ju, Byeong-Kwon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.100-103
    • /
    • 2003
  • Signal detection technologies such as fluorescence, charge and electrochemical detection used in the monolithic capillary electrophoresis system to convert the biochemical reaction into the electrical signal. The fluorescence detection using photodiodes that measure fluorescence emitted from eluting molecules is widely used for the monolithic capillary electrophoresis system. In this paper, in order to fabricate a photosensor has the increased sensitivity, we investigated on the sensitivity of general type and p-i-n type diode. The p-i-n diode has higher sensitivity than photodiode. Considering these results, we fabricated p-i-n diodes on the high resistive$(4k{\Omega}{\cdot}cm)$ wafer into rectangle and finger pattern and compared internal resistance of each pattern. The internal resistance of p-i-n diode can be decreased by the application of finger pattern has parallel resistance structure from $571{\Omega}$ to $393{\Omega}$.

  • PDF

Design of a customizable fluorescence detection system for fluorescently labeled tumor cells (형광 발현 암세포 탐지를 위한 맞춤형 검출시스템 개발)

  • Cho, Kyoungrae;Seo, Jeong-hyeok;Choe, Se-woon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.3
    • /
    • pp.261-266
    • /
    • 2019
  • Flow cytometry is an electrical detection system that provides precise and diverse optical properties to cells and micro particles. Flow cytometry, which provides multidimensional information including cell size and granularity through light scattering and fluorescence emission generated by the induction of light of a specific wavelength to the fluorescently treated cells or micro particles, plays an important role in biomedical and biophysical fields. However, it has some drawbacks such as high cost, size of the instrument and limitation in selecting fluorescent dyes. Therefore, in this paper, a low cost compact fluorescent detection system is developed using light-emitting diode and microcontroller. The proposed fluorescence detection system has a replaceable the light source/fluorescence filter/photodetector and constructed by 3D printer, so that the user can design a customized system according to the selected fluorescent dyes. The fluorescence intensity was measured by varying the number of fluorescently labeled cells, and the measured intensities showed a high linearity within the tested concentration ranges.