DOI QR코드

DOI QR Code

The performance of Bio-aerosol Detection System (BDS) with 405 nm laser diode

405 nm 광원을 이용한 생물입자탐지기의 에어로졸 분석성능

  • Jeong, Young-Su (The 5th R&D Institute-3, Agency for Defense Development(ADD)) ;
  • Chong, Eugene (The 5th R&D Institute-3, Agency for Defense Development(ADD)) ;
  • Lee, Jong-Min (The 5th R&D Institute-3, Agency for Defense Development(ADD)) ;
  • Choi, Kibong (The 5th R&D Institute-3, Agency for Defense Development(ADD))
  • 정영수 (국방과학연구소 5본부 3부) ;
  • 정유진 (국방과학연구소 5본부 3부) ;
  • 이종민 (국방과학연구소 5본부 3부) ;
  • 최기봉 (국방과학연구소 5본부 3부)
  • Received : 2017.03.10
  • Accepted : 2017.03.22
  • Published : 2017.03.31

Abstract

This paper offer the characteristics for the detection and classification of biological and non-biological aerosol particles in the air by using laser-induced-fluorescence (LIF) based Bio-aerosol Detection System (BDS). The BDS is mainly consist of an optical chamber, in-outlet nozzle system, 405 nm diode laser, an avalanche photo detector (APD) for scattering signal and photomultiplier tubes (PMT) for fluorescence signals in two different wavelength range ; F1, 510-600 nm and F2, 435-470 nm. The detection characteristics, especially ratio of fluorescence signal intensity were examined using well-known components : polystylene latex (PSL), fluorescence PSL, $2{\mu}m$ of SiO2 micro sphere, dried yeast, NADH, ovalbumin, fungicide powder and standard dust. The results indicated that the 405 nm diode laser-based LIF instrument can be a useful bio-aerosol detection system for unexpected biological threaten alter in real-time to apply for dual-use technology in military and civilian fields.

Keywords

References

  1. Agranovski, V., Ristovski, K., Hargreaves, M., Blackall, P.J., and Morawska, L. (2003). Real time measurement of bacterial aerosols with the UVAPS, Journal of Aerosol Science, 34, 301-317. https://doi.org/10.1016/S0021-8502(02)00181-7
  2. Ammor, M. S. (2007). Recent advances in the use of intrinsic fluorescence for bacterial identification and characterization, Journal of Fluorescence, 17. 455-459. https://doi.org/10.1007/s10895-007-0180-6
  3. Choi, K., Ha, Y., Lee, H. K., and Lee, J. (2014). Development of a Biological Aerosol Detector using Laser-Induced Fluorescence and a Particle Collection System, Instrumentation Science and Technology, 42, 200-214. https://doi.org/10.1080/10739149.2013.855639
  4. Hairston, P. P., Ho, J., and Quant, F. R. (1997). Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence, Journal of Aerosol Science, 28, 471-480. https://doi.org/10.1016/S0021-8502(96)00448-X
  5. Hill, S. C., Pan, Y. L., Williamson, C., Santarpia, J. L., and Hill, H. H. (2013). Fluorescence of bioaerosols: mathematical model including primary fluorescing and absorbing molecules in bacteria, Optics Express, 21, 22285-22313. https://doi.org/10.1364/OE.21.022285
  6. Jeong, Y. S., Choi, S., Chong, E., Kim, J. H., and Kim, S. J. (2014). Rapid detection of Bacillus spore aerosol particles by direct in situ analysis using MALDI-TOF mass spectrometry, Letters in Applied Microbiology, 59, 177-183. https://doi.org/10.1111/lam.12261
  7. Kim, H. G., Hwang, G. B., Lee, J. H, and Lee, B. U. (2009). A study of a thermal energy equipment for controlling airborne microorganisms in indoor laboratory environments, Particle and Aerosol Research, 5, 133-138.
  8. Layshock, J. A., Pearson, B., Crockett, K., Brown, M. J., van Cuyk, S., Daniel, B. W., and Omberg, K. M. (2012). Reaerosolization of Bacillus spp. in outdoor environments: a review of the experimental literature, Biosecurity and Bioterrorism 10, 299-303. https://doi.org/10.1089/bsp.2012.0026
  9. Lighthart, B., and Stetzenbach, L. D. (1994) Distribution of microbial bioaerosol, In Atmospheric Microbial Aerosols, New York, Chapman & Hall, pp 68-98.
  10. Premmerman, C. A. (2000). Detection of biological agents, Lincoln Laboratory Journal, 12, 3-32.