• Title/Summary/Keyword: fluorescence detection

Search Result 606, Processing Time 0.03 seconds

Detection of Nitroaromatic Compounds Based on Fluorescent Silafluorene Chemosensors

  • Kim, Bumseok
    • Journal of Integrative Natural Science
    • /
    • v.3 no.1
    • /
    • pp.19-23
    • /
    • 2010
  • A simple and rapid method is described for detecting nitroaromatic explosives in air or seawater with the use of photoluminescent organosilicon compounds. The synthesis, spectroscopic characterization, and fluorescence quenching efficiency of silafluorenes are reported. Silafluorenes were synthesized from the reduction of dilithiobiphenyl with dichlorosilanes. Two silafluorenes were used for the detection of nitroaromatic compounds. Detection of nitroaromatic molecules, such as 2,4-dinitrotoluene (DNT), 2,4,6-trinitrotoluene (TNT), and picric acid (PA), has been explored. A linear Stern-Volmer relationship was observed for the first three analytes. Fluorescence spectra of silafluorenes obtained in either toluene solutions or thin films displayed no shift in the maximum of the emission wavelength. The photoluminescence quenching occurs by a static mechanism.

Simultaneous Enantiomer Separation of α-Amino Acids and Their Esters as Fluorenylmethoxycarbonyl Derivatives under UV and Fluorescence Detection by High Performance Liquid Chromatography (고성능 액체 크로마토그래피에서 아미노산과 이들 에스테르의 플루오레닐메톡시카르보닐 유도체의 자외선과 형광 검출에서의 동시 광학분리)

  • Islam, Md. Fokhrul;Lee, Wonjae
    • KSBB Journal
    • /
    • v.30 no.4
    • /
    • pp.197-201
    • /
    • 2015
  • Liquid chromatographic enantiomer separation of ${\alpha}$-amino acids and their methyl and ethyl esters as fluorenylmethoxycarbonyl (FMOC) derivatives was performed using a recently developed chiral column (Chiralpak IE) based on polysaccharide derivative under simultaneous UV detection and fluorescence detection. The degree of enantiomer separation of ${\alpha}$-amino acid esters as FMOC derivatives is generally higher than that of the corresponding ${\alpha}$-amino acids. Especially, ${\alpha}$-amino acid methyl esters showed the greatest enantioseparation. As this method developed in this study can be applied to determine the chemical and optical purity of ${\alpha}$-amino acids and esters, it is expected to be quite useful for their chiral separation using Chiralpak IE.

Preconcentration and Detection of Herbicides in Water by Using the On-line SPE-HPLC System and Photochemical Reaction

  • 이승호;이성광;박영훈;김현주;이대운
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.10
    • /
    • pp.1165-1171
    • /
    • 1999
  • The analysis of trace herbicides using the on-line SPE-HPLC system and a photochemical reaction was studied. 18 compounds of herbicides including eight triazines, six phenoxy acids and esters, and four other herbicides were examined. The on-line SPE-HPLC system developed for selection of eluting solvent improved chromatographic efficiency. The recoveries of herbicides were higher than 77%. With 100 mL tap water samples, the detection limits for all analytes were in the 0.1-2.3×10-10 M range. Detection was done by a UV or fluorescence spectrometer after photochemical reaction at the end of the column with 2W or 450W mercury lamp. Without a photochemical reaction, all compounds responded to 230 nm UV detector, but phenoxy acids and esters were weakly detected. However, with a photochemical reaction, these compounds were selectively detected at 320 nm wavelength of UV absorption and 400 nm emission of the fluorescence detectors. This method can be used for the analysis of environmental water containing herbicides at trace levels.

Study for Enhancement of the Detection Sensitivity in Hand-Held X-Ray Fluorescence Device (휴대용 XRF 장치의 검출감도 향상에 관한 연구)

  • Kim, Sung-Soo;Lee, Youn-Seoung;Kim, Do-Yun;Ko, Dong-Seob
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.6
    • /
    • pp.409-415
    • /
    • 2011
  • The method to improve the detection sensitivity of Hand-held XRF (X-Ray Fluorescence) device currently being developed is discussed. To minimize the loss of the intensity due to atmospheric gas molecules, the vacuum module, which can be filled with atmospheric or He gas, between the sample and the detector was installed. And the change of the detection sensitivity was measured in a vacuum and in the He gas-filled state. As a result, the following three important results were obtained; Firstly, XRF intensity was increased 2~4 times in the low energy range (3~4 keV). It is a very important result because the enhancement of the detection sensitivity means shortening of the detection time in Hand-held XRF device. Secondly, the possibility of detection of the elements less than 3 keV in emission energy was confirmed. Thirdly, the absorption by atmospheric gas molecules can be minimized without vacuum- sealed vessel in Hand-held XRF device, if the vacuum module filled with He gas is used. We concluded that all of three results are very meaningful in the development of a Hand-held XRF device.

Development of Customizable Fluorescence Detection System using 3D Printer (3D 프린터를 활용한 맞춤형 휴대용 형광측정 장치 개발)

  • Cho, Kyoung-rae;Seo, Jeong-hyeok;Choe, Se-woon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.278-280
    • /
    • 2019
  • Flow cytometer is one of the instrument that can measure various optical properties of a single cell or microparticle. These parameters including size, granularity, and fluorescence intensity are determined by the physical and optical interaction of the cells with excitation light source. However, users have some difficulties such as high cost, size of instrument, and limited fluorescence selectivity. In addition, abundant data is also unintentionally acquired even though user wants to have a single optical parameter. For these reasons, the use of flow cytometer is more challenging for researchers to apply their study. Therefore, the proposed study aims to develop a low-cost portable fluorescence acquisition system using a commercially available light-emitting diode and photodiode. It is designed by a 3D printer, and fluorescence selectivities are increased by changing of the light source / optical filter / detection sensor. Various number sets of fluorescently labeled cells were measured, and its feasibility was evaluated through the proposed system. As a result, acquried fluorescence intensities were proportional to the concentration of the cells and showed high linearity.

  • PDF

Detection of Mycoplasma-like Organisms in Some Trees by Fluorescence Microscopy with Berberine Sulphate (Berberine Sulphate를 이용(利用)한 형광현미경기법(螢光顯微鏡技法)에 의(依)한 수목(樹木)마이코플라스마검정(檢定))

  • Bak, Won Chull;La, Yong Joon
    • Journal of Korean Society of Forest Science
    • /
    • v.80 no.2
    • /
    • pp.232-236
    • /
    • 1991
  • The efficacy of berberine sulphate, a fluorochrome having binding properties with both DNA and RNA, was investigated for the detection of mycoplasma-like organisms(MLOs) in jujube(Zizyphus jujuba), paulownia(Paulownia tomentosa), mulberry(Morus alba) trees and periwinkle (Catharanthus roseus) plant. When examined under fluorescence microscope, berberine sulphate-stained sections of diseased samples showed distinct MLO-specific fluorescent particles in the phloem area, while such fluorescence was absent in the healthy ones. This staining technique was proved to be a very accurate method for the diagnosis of MLO infections in woody and herbaceous plants. Furthermore, the cheap and easy procedure could be used to test a great number of samples on MLO infections with reliability and rapidity.

  • PDF

A Study of Liquid Chromatographic Detection Method for Thiocarbamates by Using Photochemical Reaction (광화학 반응을 이용한 티오카바메이트류의 액체 크로마토그래피 검출법에 관한 연구)

  • Dai Woon Lee;Young Hun Park;Yong Wook Choi
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.4
    • /
    • pp.453-461
    • /
    • 1993
  • Detection method was developed using a simply designed photochemical reactor made of teflon coil and low pressure mercury lamp. This method of UV photolysis of analytes followed by UV, fluorescence and electrochemical detection was found to be useful for four thiocarbamates. Analytes eluting from the column are irradiated with a high flux of 254 nm UV light, so that they change to either fluorescent active forms or highly electrochemically sensitive products. Appling this technique to the UV detection, thiocarbamates were converted into long wavelength absorbing products upon UV irradiation. In fluorescence detector four thiocarbamates are not detected at nonirradiated condition but fluorescence signals of MPTC, CPTC photolysates are appeared after irradiation with UV light. The electrochemical detection for the determination of thiocarbamates was enhanced up to 5∼20 fold signal after UV irradiation, compared to that of the nonirradiated. The detection limit of thiocarbamates on electrochemical detector was 13.3∼0.02 ng under pH 7.0, ionic strength $0.5{\times}10^{-2}$ M, phosphate buffer solution. Adducts produced by reaction of photolysates and OPA-MERC in the reaction coil were monitored at 425 nm with fluorescence detector, and one of the photolysates was primary amine.

  • PDF

Design and evaluation of light source for photodynamic diagnosis of cancer (광역학적 암진단을 위한 광원장치의 설계 및 평가)

  • Lim, Hyun-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.73-76
    • /
    • 2007
  • Photodynamic diagnosis(PDD) is a method to diagnose the possibility of cancer, both by the principle that if a photosensitizer is injected into an organic tissue, it is accumulated in the tissue of a malignant tumor selectively after a specific period, and by a comparison of the intensity of the fluorescence of normal tissue with abnormal tissue after investigating the excitation light of a tissue with accumulated photosensitizer. Since the selection of the wavelength band of excitation light has an interrelation with fluorescence generation according to the selection of a photosencitizer, it plays an important role in POD. This study aims at designing and evaluating light source devices that can stably generate light with various kinds of wavelengths In order to make possible PDD using a photosensitizer and diagnosis using auto-fluorescence. The light source device was a Xenon lamp and filter wheel, composed of an optical output control through Iris and filters with several wavelength bands It also makes the inducement of auto-fluorescence possible because it is designed to generate a wavelength band of 380-400. The transmission part of the light source was, developed to enhance the efficiency of light transmission. To evaluate this light source device, the characteristics of the light output and wavelength band were verified. To validate the capability of this device as PDD the detection of auto-fluorescence using mouse was performed.

  • PDF

Photoisomerization of Symmetric Carbocyanines

  • 민형식;강유남;박정희
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.7
    • /
    • pp.747-753
    • /
    • 1998
  • The phoisomerization process of symmetric carbocyanine dyes such as 3,3'-diethyloxadicarbocyanine iodide (DODCI), 3,3'-diethylthiadicarbocyanine iodide (DfDCI), 1,1'-diethyl-2,2'-dicarbocyanine iodide (DDI), 1,1'-diethyl-2,2'-carbocyanine iodide (DCI), and cryptocyanine (1,1'-diethyl-4,4'-carbocyanine) iodide (CCI) have been studied by measuring the steady state and time resolved fluorescence spectra and the ground-state recovery profiles. The steady-state fluorescence spectrum of photoisomer as a function of concentration and excitation wavelength provides the evidence that the fluorescence of photoisomer is formed by the radiative energy transfer from the normal form and the quantum yield for the formation of photoisomer is increased by decreasing the excitation wavelength. The fluorescence decay profiles have been measured by using the time correlated single photon counting (TCSPC) technique, showing a strong dependence on the concentration and the detection wavelength, which is due to the formation of excited photoisomers produced either by the radiative energy transfer from the non-nal form or by absorbing the 590 nm laser pulse. We first report the fluorescence decay time of photoisomers for these cyanine dyes. The experimental results are explained by introducing the semiempirical calculations. The ground state recovery profiles of DTDCI, DDI, and CCI normal forms have been measured, showing that the recovery time from the singlet excited state is similar with the fluorescence decay time.