• Title/Summary/Keyword: fluorescence assay

Search Result 425, Processing Time 0.022 seconds

Inhibitory effect of sakuranetin on (1,3)-β-glucan synthase

  • You, Myung-Ja;Kim, Bo-Mi;Bhatt, Lok Ranjan;Chai, Kyu-Yun;Baek, Seung-Hwa
    • Advances in Traditional Medicine
    • /
    • v.10 no.1
    • /
    • pp.44-49
    • /
    • 2010
  • An examination of the kinetic properties of UDP-glucose, (1,3)-$\beta$-glucans (callose) synthase, from mung bean seedlings (Sorbus commixta cortex) shows that these enzymes have a complex relationship with UDP-glucose and various effectors. Fluorescence assay showed that deoxynojirimycin increased the inhibitory effect of (1,3)-$\beta$-glucan synthase in a concentration-dependent manner. The inhibitory effect of sakuranetin (34.34%) was higher than that of deoxynojirimycin (80.63%). Disk diffusion method revealed that sakuranetin inhibited the growth of Candida albicans to a 1.5 mm inhibition zone. These results suggest that sakuranetin, isolated from Sorbus commixta cortex extract, can be used as stable antifungal material.

Caspase-11 Promoter-GFP Construct as a Dual Reporter of Cytotoxicity and Inflammation

  • Shin, Ki-Soon;Kang, Shin-Jung
    • Animal cells and systems
    • /
    • v.10 no.2
    • /
    • pp.73-77
    • /
    • 2006
  • Caspase-11 has been known as a dual regulator of apoptosis and inflammatory response. An unusual feature of caspase-11 is that its expression is induced by apoptotic or proinflammatory stimuli. Utilizing these unusual features of caspase-11, we have developed a simple and sensitive assay method to screen pro- or anti-apoptotic/inflammatory molecules. To develop this assay method, we generated a reporter construct where GFP expression is regulated by caspase-11 promoter. When several types of cultured cells were transfected with this reporter construct and subsequently treated with various apoptotic or proinflammatory molecules, expression of GFP by the activation of caspase-11 promoter was easily detected by fluorescence microscopy or spectrofluorometry. In addition, a reduction of the GFP fluorescence was detected when an agent reported to suppress caspase-11 induction was applied. These results suggest that our reporter system can be used to screen pro- or anti-apoptotic/inflammatory molecules.

A FRET Assay for Celiac Disease

  • Lee, Sae A;Cho, Chul Min;Jang, Il Ho;Kang, Jung Sook
    • Biomedical Science Letters
    • /
    • v.22 no.4
    • /
    • pp.160-166
    • /
    • 2016
  • To provide a basis for a homogeneous fluorescence resonance energy transfer (FRET) immunoassay for celiac disease, we carried out a FRET experiment using guinea pig tissue transglutaminase (tTG) and antibodies to tTG (anti-tTG) purified from rat serum. Fluorescein was utilized as the probe, and a nonfluorescent dye, QSY 7 served as the quencher. We labeled anti-tTG and tTG with fluorescein isothiocyanate and QSY 7 succinimidyl ester, respectively. Fluorescein-labeled anti-tTG was the donor, and QSY 7-labeled tTG was the acceptor of the FRET experiment. When we titrated fluorescein-labeled anti-tTG with QSY 7-labeled tTG, we observed a large decrease in the steady-state fluorescence intensity, which was due to strong FRET from fluorescein-labeled anti-tTG to QSY 7-labeled tTG. Using time-resolved fluorescence spectroscopy, we could also observe a decrease in the fluorescence lifetime, which confirms the steady-state data. We expect that these results might be useful in the development of a novel fluorescence immunoassay for an easy screening and follow-up of celiac patients.

Applicability of Fluorescein Diacetate (FDA) and Calcein-AM to Determine the Viability of Marine Plankton (FDA와 Calcein-AM 방법을 이용한 해양플랑크톤 생사판별기법)

  • Baek, Seung-Ho;Shin, Kyoung-Soon
    • Ocean and Polar Research
    • /
    • v.31 no.4
    • /
    • pp.349-357
    • /
    • 2009
  • Ballast water is widely recognized as a serious environmental problem due to the risk of introducing non-indigenous aquatic species. In this study we aimed to investigate measures which can minimize the transfer of aquatic organisms from ballast water. Securing more reliable technologies to determine the viability of aquatic organisms is an important initiative in ballast water management systems. To evaluate the viability of marine phytoplankton, we designed the staining methods of fluorescein diacetate (FDA) and Calcein-AM assay on each target species belonging to different groups, such as bacillariphyceae, dinophyceae, raphidophyceae, chrysophyceae, haptophyceae and chlorophyceae. The FDA method, which is based on measurements of cell esterase activity using a fluorimetric stain, was the best dye for determining live cells of almost all phytoplankton species, except several diatoms tested in this study. On the other hand, although fluorescence of Calcein-AM was very clear for a comparatively longer time, green fluorescence per cell volume was lacking in most of the tested species. According to the Flow CAM method, which is a continuous imaging technique designed to characterize particles, green fluorescence values of stained cells by FDA were significantly higher than those of Calcein-AM treatments and control, implying that the Flow CAM using FDA assay could be adapted as an important tool for distinguishing living cells from dead cells. Our results suggest that the FDA and Calcein-AM methods can be adapted for use on phytoplankton, though species-specific characters are greatly different from one organism to another.

Computational and experimental characterization of estrogenic activities of 20(S, R)-protopanaxadiol and 20(S, R)-protopanaxatriol

  • Zhang, Tiehua;Zhong, Shuning;Hou, Ligang;Wang, Yongjun;Xing, XiaoJia;Guan, Tianzhu;Zhang, Jie;Li, Tiezhu
    • Journal of Ginseng Research
    • /
    • v.44 no.5
    • /
    • pp.690-696
    • /
    • 2020
  • Background: As the main metabolites of ginsenosides, 20(S, R)-protopanaxadiol [PPD(S, R)] and 20(S, R)-protopanaxatriol [PPT(S, R)] are the structural basis response to a series of pharmacological effects of their parent components. Although the estrogenicity of several ginsenosides has been confirmed, however, the underlying mechanisms of their estrogenic effects are still largely unclear. In this work, PPD(S, R) and PPT(S, R) were assessed for their ability to bind and activate human estrogen receptor α (hERα) by a combination of in vitro and in silico analysis. Methods: The recombinant hERα ligand-binding domain (hERα-LBD) was expressed in E. coli strain. The direct binding interactions of ginsenosides with hERα-LBD and their ERα agonistic potency were investigated by fluorescence polarization and reporter gene assays, respectively. Then, molecular dynamics simulations were carried out to simulate the binding modes between ginsenosides and hERα-LBD to reveal the structural basis for their agonist activities toward receptor. Results: Fluorescence polarization assay revealed that PPD(S, R) and PPT(S, R) could bind to hERα-LBD with moderate affinities. In the dual luciferase reporter assay using transiently transfected MCF-7 cells, PPD(S, R) and PPT(S, R) acted as agonists of hERα. Molecular docking results showed that these ginsenosides adopted an agonist conformation in the flexible hydrophobic ligand-binding pocket. The stereostructure of C-20 hydroxyl group and the presence of C-6 hydroxyl group exerted significant influence on the hydrogen bond network and steric hindrance, respectively. Conclusion: This work may provide insight into the chemical and pharmacological screening of novel therapeutic agents from ginsenosides.

Optimization of SNP Genotyping Assay with Fluorescence Polarization Detection

  • Cai Chun Mei;Van Kyujung;Kim Moon Young;Lee Suk-Ha
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.5
    • /
    • pp.361-367
    • /
    • 2005
  • Single nucleotide polymorphisms (SNPs) are valuable DNA markers due to their abundance and potential for use in automated high-throughput genotyping. Numerous SNP genotyping assays have been developed. In this report, one of effective and high throughput SNP genotyping assays, which was named the template-directed dye-terminator incorporation with fluorescence polarization detection (FP-TDI) was described. Although the most of this assay succeed, the objective of this work was to deter­mine the reasons for the failures, find ways to improve the assay and reduce the running cost. Ninety $F_2$-derived soybean, Glycine max (L.) Merr., RILs from a cross between 'Pureunkong' and 'Jinpumkong 2' were genotyped at four SNPs. FP measurement was done on $Victot^3$ microplate reader (perkinelmer Inc., Boston, MA, USA). Increasing the number of thermal cycles in the single-base extension step increased the separation of the FP values between the products corresponding to different genotypes. But in some assays, excess of heterozygous genotypes was observed with increase of PCR cycles. We discovered that the excess heterozygous was due to misincorporation of one of the dye­terminators during the primer extension reaction. After pyrophosphatase incubation and thermal cycle control, misincoporation can be effectively prevented. Using long amplicons instead of short amplicons for SNP genotyping and decreasing the amount of dye terminator and Acyclopol Taq polymerase to 1/2 or 1/3 decreased the cost of the assay. With these minor adjustments, the FP-TDI assay can be used more accurately and cost-effectively.

Rapid Identification of Ginseng Cultivars (Panax ginseng Meyer) Using Novel SNP-Based Probes

  • Jo, Ick-Hyun;Bang, Kyong-Hwan;Kim, Young-Chang;Lee, Jei-Wan;Seo, A-Yeon;Seong, Bong-Jae;Kim, Hyun-Ho;Kim, Dong-Hwi;Cha, Seon-Woo;Cho, Yong-Gu;Kim, Hong-Sig
    • Journal of Ginseng Research
    • /
    • v.35 no.4
    • /
    • pp.504-513
    • /
    • 2011
  • In order to develop a novel system for the discrimination of five ginseng cultivars (Panax ginseng Meyer), single nucleotide polymorphism (SNP) genotyping assays with real-time polymerase chain reaction were conducted. Nucleotide substitution in gDNA library clones of P. ginseng cv. Yunpoong was targeted for the SNP genotyping assay. From these SNP sites, a set of modified SNP specific fluorescence probes (PGP74, PGP110, and PGP130) and novel primer sets have been developed to distinguish among five ginseng cultivars. The combination of the SNP type of the five cultivars, Chungpoong, Yunpoong, Gopoong, Kumpoong, and Sunpoong, was identified as 'ATA', 'GCC', 'GTA', 'GCA', and 'ACC', respectively. This study represents the first report of the identification of ginseng cultivars by fluorescence probes. An SNP genotyping assay using fluorescence probes could prove useful for the identification of ginseng cultivars and ginseng seed management systems and guarantee the purity of ginseng seed.

Yeast two-hybrid assay with fluorescence reporter (형광 리포터를 활용한 효모 단백질 잡종 기법 개발)

  • Park, Seong Kyun;Seo, Su Ryeon;Hwang, Byung Joon
    • Korean Journal of Microbiology
    • /
    • v.55 no.3
    • /
    • pp.199-205
    • /
    • 2019
  • Yeast two-hybrid (Y2H) technique has been used to study protein-protein interactions, but its application particularly to a large-scale analysis of protein interaction networks, is limited by the fact that the technique is labor-intensive, based on scoring colonies on plate. Here, we develop a new reporter for the measurement of the protein-protein interactions by flow cytometry. The yeast harboring interacting proteins can also be enriched by fluorescence-activated cell sorting (FACS) or magnetic-activated cell sorting (MACS). When two interacting proteins are present in the same yeast cell, a reporter protein containing 10 tandem repeats of c-myc epitope becomes localized on the surface of the cell wall, without affecting cell growth. We successful measured the surface display of c-myc epitope upon interacting p53 with SV40 T antigen by flow cytometry. Thus, the newly developed Y2H assay based on the display of c-myc repeat on yeast cell wall could be used to the simultaneous analysis of multiple protein-protein interactions without laborious counting colonies on plate.