• Title/Summary/Keyword: fluidized-bed

Search Result 768, Processing Time 0.021 seconds

Combustion of RDF and RPF in a Lab-Scale Circulating Fluidized Bed (실험실규모 순환유동층에서 RDF와 RPF의 연소 특성에 관한 연구)

  • Lee, J.S.;Lee, E.L.;An, M.H.;Park, S.U.;Shin, D.H.;Hwang, J.H.
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.173-179
    • /
    • 2004
  • Combustion of refuse derived fuel(RDF) and refuse plastic fuel (RPF) was carried out in a lab-scale circulating fluidized bed. Experiment was investigated cold flow visualization. RDF was made by C & tech and RPF was made by KRS. The results include distribution of temperature in the combustion chamber, and concentrations of flue gas such as $O_2$, $CO_2$, CO, $NO_x$ and HCs Micro G.C(gas chromatograph) was employed to find out concentration of He Temperature distribution was different when RDF and RPF were burnt respectably. As air ratio became increased, $CO_2$, CO, and total of HCs emissions were decreased. According to the number of carbon atom of HCs, HC were classified as five kinds of HC.

  • PDF

Comparative Evaluation of Thermal Design Parameters of Different Sizes of Circulating Fluidized Bed Boiler (규모별 순환유동상 보일러의 열설계 변수 비교 평가)

  • Kim, Tae-Hyun;Choi, Sang-Min
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.4
    • /
    • pp.16-22
    • /
    • 2011
  • The present paper discusses thermal design parameters of different sizes of circulating fluidized bed (CFB) boilers with capacities ranging from 2 MWe pilot scale boiler to a 600 MWe utility boiler. Physical boiler size and shape of furnace were identified and dimensional data have been summarized. By performing thermal design for each of the boilers, heat transfer surface area, furnace shape and size, and allocation of heat transfer surface for water-steam side heat absorption have been recalculated, and presented. Although boilers may have significantly different capacity, the facilities have common design parameters, when they are evaluated as basic thermal design processes. The significance of thermal design procedure is explicitly discussed.

Characteristics of Fluid Flow in the Fluidized Bed Shell and Tube Type Heat Exchanger with Corrugated Tubes

  • Ahn Soo Whan;Bae Sung Taek;Kim Myoung Ho
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.12 no.4
    • /
    • pp.198-205
    • /
    • 2004
  • An experimental study was carried on the characteristics of fluid flow and heat transfer in a fluidized bed shell-and-tube type heat exchanger with corrugated tubes. Seven different solid particles having same volume were circulated in the tubes. The effects of vari­ous parameters such as water flow rates, particle geometries and materials, and geometries of corrugated tubes on relative velocities and drag coefficients were investigated. The present work showed that the drag force coefficients of particles in the corrugated tubes were usually lower than those in the smooth tubes, meanwhile the relative velocities between particles and water in the corrugated tubes were little higher than those in the smooth tubes except the particles of glasses.

Characteristics of Fluid Flow and Heat Transfer in a Fluidized Bed Heat Exchanger (순환유동층 열교환기내 유동과 열전달 특성)

  • 안수환;이병창;김원철;이윤표
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.4
    • /
    • pp.315-323
    • /
    • 2002
  • The commercial viability of heat exchanger is mainly dependent on their long-term fouling characteristics because the fouling increases the pressure loss and degrades the thermal performance of a heat exchanger. An experimental study was performed to investigate the characteristics of fluid flow and heat transfer in a fluidized bed heat exchanger with circulating various solid particles. The present work showed that the drag force coefficients of particles in the internal flow were higher than those in the external flow, in addition, the solid particle periodically hitting the tube wall broke the thermal boundary layer, and increased the rate of heat transfer. Particularly when the flow velocity was low, the effect was more pronounced.

Hydraulic Shock of Apartment Sewage in Inverse Fluidized Bed Biofilm Reactor (역유동층 생물막 반응기에서 수리학적 충격에 따른 아파트 오수의 처리)

  • 박영식;나영수
    • Journal of Environmental Science International
    • /
    • v.6 no.1
    • /
    • pp.17-24
    • /
    • 1997
  • The objective of this study was to examine the transient response to hydraulic shocks in an Inverse fluidized bed bioflm reactor(IFBBR) for the treatment of apartment sewage. The hydraulic shock experiments, when the system were reached at steady state with each HRT 12, 7, and 4hr, were conducted by chancing twice HRT per day during 3days. The SCOD, SS, DO, and pH of the effluent stream were increased with hydraulic shock, but easily recovered to the steady state of pre-hydraulic shock condition. In spite of hydraulic shock, there were not much variation of biomass concentration, biofilm thickness and biofilm dry density.

  • PDF

Grinding Method for Increasing Specific Surface Area of Fluidized Bed Fly Ash

  • Lim, Chang Sung;Lee, Ki Gang
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.2
    • /
    • pp.153-159
    • /
    • 2019
  • In this study, fly ash of a fluidized bed boiler produced in a power plant was stabilized by hydration and carbonation reaction. Then, each raw material was pulverized by two kinds of grinding equipment (Planetary mills and pot mills); the degree of grinding and the agglomeration behavior were observed. It was found that there were changes of specific surface area and particle size distribution according to grinding time. The surface of the raw material was observed using an optical microscope. As a result, agglomerates of about 75 ㎛ or more due to electrostatic phenomenon were formed as the grinding time became longer; it was confirmed that the crushing efficiency slightly increased with use of antistatic agent.

Riser Design Approach for Particle-Circulation-Type Heat Exchangers (입자 순환식 열교환기의 상승관 설계방법)

  • Jun Yong-Du
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.311-312
    • /
    • 2002
  • In this paper a systematic design approach to determine the optimum size (height) of circulating fluidized bed heat exchanger for exhaust gas heat recovery is prososed. Unlike the convensional heat exchangers where the length of the heat exchanger section is not very much emphasized, the vertical length of heat exchanger tube in the case of fluidized bed heat exchangers is important because this length determines the time interval during which particles reside and transfer heat in the heat exchanger section. For particles initial conditions are nearly stationary, accelerating particles motion should be considered rather than simply assuming fully developed condition. A way to estimate optimum tube length at different fluid velocity and particle sizes is suggested based on the required conditioning time for heat transfer from the flue gas to solid particles.

  • PDF

Circulting Fluidized Bed Combustion of Refuse Derived Fuel and Steam Production (폐기물 고형연료(RDF)의 순환유동층 연소 및 증기생산)

  • Shun, Do-Won;Bae, Dal-Hee;Cho, Sung-Ho;Lee, Seung-Yong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.613-616
    • /
    • 2007
  • A pilot scale circulating fluidized bed for refuse derived fuel is developed and constructed in order to demonstrate efficient and safe utilization of waste fuel. The capacity of the facility is 8 steam tons per hour with the steam quality of $450^{\circ}C$ and 38atm. The quantity and the quality of the produced steam is sufficient to produce 1MWe power capacity. The test operation proved the high combustion efficiency of 99% and up. The emissions of NOx, SOx in flue gas are below 100, 60ppm respectively with out any emission control. HCl emissions were above 400ppm at the combustor exit but reduced below 10ppm after scrubber.

  • PDF

Approximated Solution of Model for Three-Phase Fluidized Bed Biofilm Reactor in Wastewater Treatment

  • Choi Jeong-Woo;Min Junhong;Lee Won-Hong;Lee Sang Baek
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.1
    • /
    • pp.65-70
    • /
    • 2000
  • An approximated analytical solution of mathematical model for the three phase fluidized bed bioreactor (TFBBR) was proposed using the linearization technique to describe oxygen utilization rate in wastewater treatment. The validation of the model was done in comparison with the experimental results. Satisfactory agreement was obtained in the comparison of approximated analytical solution and numerical solution in the oxygen concentration profile of a TFBBR. The approximated solutions for three modes of the liquid phase flow were compared. The proposed model was able to predict the biomass concentration, dissolved oxygen concentration the height of efficient column, and the removal efficiency.

  • PDF

Removal of Benzene by the Fluidized Bed Bioreactor including Microbial Consortium (혼합균주를 함유한 유동층 생물반응기를 이용한 벤젠의 제거)

  • 주준걸;김연재;조성기;오광중;김종우;김동욱
    • KSBB Journal
    • /
    • v.19 no.3
    • /
    • pp.206-209
    • /
    • 2004
  • MY microbial consortium were obtained from sludges of wastewater to degrade benzene effectively and Rhodococcus ruber DSM 43338T was identified as major microorganism. The fluidized bed biofilter including MY microbial consortium showed critical removal rate of benzene at 32 g/㎥ h, and maintained stable removal efficiency for 17 days of continuous operation.