• Title/Summary/Keyword: fluidized bed

Search Result 768, Processing Time 0.029 seconds

Degradation of Dye Wastewater by Advanced Oxidation Process: A Comparative Study (고급산화공정에 의한 안료폐수 처리: 비교 연구)

  • Park Young-Seek
    • Journal of Environmental Science International
    • /
    • v.15 no.1
    • /
    • pp.67-75
    • /
    • 2006
  • The degradation of Rhodamine B (RhB) in water was investigated in laboratory-scale experiments, using five advanced oxidation Processes (AOPs) $UV/H_2O_2$, lenten, photo-lenten, $UV/TiO_2,\;UV/TiO_2/H_2O_2$. The photodegradation experiments were carried out in a fluidized bed photoreactor equipped with an immersed 32 W UV-C lamp as light source. initial decolorization rate and COD removal efficiency were evaluated and compared. The results obtained showed that the initial decolorization rate constant was quite different for each oxidation process. The relative order of decolorization was: photo-fenton > $UV/TiO_2/H_2O_2$ > fenton > $UV/H_2O_2$ > $UV/TiO_2$ > UV > $H_2O_2$. The relative order of COD removal was different from decolorization: photo-fenten ${\fallingdotseq}$ $UV/TiO_2/H_2O_2\;>\;UV/TiO_2\;>\;fenton\;>\;UV/H_2O_2$. The Photo-lenten and $UV/TiO_2/H_2O_2$ processes seem to be appropriate for decolorization and COD removal of dye wastewater.

Attrition Characteristics of WGS Catalysts for SEWGS System (SEWGS 시스템을 위한 WGS 촉매들의 마모특성)

  • Ryu, Hojung;Lee, Dongho;Lee, Seungyong;Jin, Gyoungtae
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.2
    • /
    • pp.122-130
    • /
    • 2014
  • Attrition characteristics of WGS catalysts for pre-combustion $ CO_2$ capture were investigated to check attrition loss of those catalysts, to check change of particle size distribution during attrition tests, and to determine solid circulation direction of WGS catalysts in a SEWGS system. The cumulative attrition losses of two catalysts increased with increasing time. However, attrition loss under humidified condition was lower than that under non-humidified condition case for long-term attrition tests. Between two catalysts, attrition loss of PC-29 catalyst was higher than that of commercial catalyst for long-term attrition tests. However, the commercial catalyst generated much more fines than PC-29 catalyst during attrition. Therefore, we conclude that the PC-29 catalyst is more suitable for fluidized bed operation if we take into account the separation efficiency of cyclone. Based on the results from the tests for the effect of humidity on the attrition loss, we selected solid circulation direction from SEWGS reactor to regeneration reactor because the SEWGS reactor contains more water vapor than regeneration reactor.

A Study on the Characteristics of Pollution Load in Biomass Power Plant with Ammonium Sulfate Injection (황산암모늄 주입시 바이오매스 발전소의 오염부하 특성 연구)

  • Lee, Chang-Yeol;Kim, Sung-Hoo;Chung, Jin-Do
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.7
    • /
    • pp.640-646
    • /
    • 2018
  • Biomass-fired power plants produce electricity and heat by burning biomass in a boiler. However, one of the most serious problems faced by these plants is severe corrosion. In biomass boilers, corrosion comes from burnt fuels containing alkali, chlorine, and other corrosive substances, causing boiler tube failures, leakages, and shorter lifetimes. To mitigate the problem, various approaches implying the use of additives have been proposed; for example, ammonium sulfate is added to convert the alkali chlorides (mainly KCl) into the less corrosive alkali sulfates. Among these approaches, the high temperature corrosion prevention technology based on ammonium sulfate has few power plants being applied to domestic power plants. This study presents the results obtained during the co-combustion of wood chips and waste in a circulating fluidized bed boiler. The aim was to investigate the characteristics of pollution load in domestic biomass power plants with ammonium sulfate injection. By injecting the ammonium sulfate, the KCl content decreased from 68.9 to 5 ppm and the NOx were reduced by 18.5 ppm, but $SO_2$ and HCl were increased by 93.3 and 68 ppm, respectively.

A Study on the Characteristics of Pollutants in CFBC Boiler with Ammonium Sulfate Injection (황산암모늄 주입시 CFBC 보일러의 오염물질 특성 연구)

  • Lee, Chang-Yeol;Jeong, Bok-Hoa;Chung, Jin-Do
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.8
    • /
    • pp.754-761
    • /
    • 2018
  • There is growing concern over the effects of global warning. In response, the power generation sector must consider a wider range of systems and fuels to generate power. One of the classes of solid fuels that is being increasingly developed is biomass. However, one of the most serious problems that biomass plants face is severe corrosion. To mitigate the problem, various approaches have been proposed in terms of additive utilization. This study is based on the results obtained during the co-combustion of wood chip and waste wood in a circulating fluidized bed boiler (CFBC boiler). The KCl concentration was reduced from 59.9 ppm to 3.9 ppm during the injection of ammonium sulfate, and NOx was reduced by 25.5 ppm from 30.6 ppm to 5.1 ppm. However, SOx increased by 110.2 ppm from 33.2 ppm to 143.4 ppm, and HCl increased by 71.5 ppm from 340.5 ppm to 412.0 ppm. Thus, we confirmed that the attitude of the superheater tube was reduced by 87 ~ 93%, and the injection of ammonium sulfate was effective in preventing high-temperature corrosion.

Ammonium uranate hydrate wet reconversion process for the production of nuclear-grade UO2 powder from uranyl nitrate hexahydrate solution

  • Byungkuk Lee ;Seungchul Yang;Dongyong Kwak ;Hyunkwang Jo ;Youngwoo Lee;Youngmoon Bae ;Jayhyung Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2206-2214
    • /
    • 2023
  • The existing wet reconversion processes for the recovery of scraps generated in manufacturing of nuclear fuel are complex and require several unit operation steps. In this study, it is attempted to simplify the recovery process of high-quality fuel-grade UO2 powder. A novel wet reconversion process for uranyl nitrate hexahydrate solution is suggested by using a newly developed pulsed fluidized bed reactor, and the resultant chemical characteristics are evaluated for the intermediate ammonium uranate hydrate product and subsequently converted UO2 powder, as well as the compliance with nuclear fuel specifications and advantages over existing wet processes. The UO2 powder obtained by the suggested process improved fuel pellet properties compared to those derived from the existing wet conversion processes. Powder performance tests revealed that the produced UO2 powder satisfies all specifications required for fuel pellets, including the sintered density, increase in re-sintered density, and grain size. Therefore, the processes described herein can aid realizing a simplified manufacturing process for nuclear-grade UO2 powders that can be used for nuclear power generation.

Properties of Eco-friendly Artificial Stone according to the mixing ratio of Geopolymer-based recycled Aggregate (지오폴리머 기반 순환골재 혼입율에 따른 친환경성 인조석재의 특성)

  • Kyung, Seok-Hyun;Choi, Byung-Cheol;Kang, Yeon-Woo;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.126-127
    • /
    • 2020
  • Recently, as interest in environmental issues increases, minimizing carbon dioxide generated during cement manufacturing is a problem to be solved. In order to solve such a problem, it is required to use an industrial by-product of recycled aggregate, blast furnace slag, and circulating fluidized bed boiler fly ash to replace it on the basis of geopolymer(=cementless). This study examines the characteristics of eco-friendly artificial stone according to the mixing ratio of geopolymer-based recycled aggregate. As a result of the experiment, when the addition rate of the alkali stimulant was 15% and the mixing ratio of the circulating aggregate was 70%, the flexural strength and compressive strength were the highest. Density and water absorption decreased as density of circulating aggregates increased and water absorption increased. However, when the mixing ratio of the circulating aggregate exceeded 70%, the flexural strength and compressive strength decreased. Therefore, in order to obtain strengths meeting the KS standards, the mixing ratio of recycled aggregate was set to 70%, and artificial stone was manufactured using industrial by-products.

  • PDF

A feasibility of coagulation as post-treatment of the anaerobic fluidized bed reactor (AFBR) treating domestic wastewater (도시하수 처리 혐기성 유동상 반응조의 후속공정으로서 화학응집의 가능성 평가)

  • Yang, Seung Yong;Bae, Jae Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.6
    • /
    • pp.623-634
    • /
    • 2014
  • This study examined a feasibility of coagulation as post-treatment to remove sulfide and phosphorus for the effluent of anaerobic fluidized bed reactor (AFBR) treating domestic wastewater. Removal efficiencies of sulfide, phosphorus and COD by coagulation were not affected by pH in the range of 5.9 to 7.2. Alkalinity requirement could be estimated by the amount of $Fe^{3+}$ to form $Fe(OH)_{3(S)}$ and to remove sulfide and phosphorus. At coagulant aid dosage of 2 mg/L, anionic polymer showed best results regarding size and settleability of flocs. Sulfide removal for the AFBR effluent at the $Fe^{3+}/S^{2-}$ ratio of 0.64, close to the theoretical value of 0.67 found with a synthetic wastewater, was only 75.2%. One of the reasons for this high $Fe^{3+}/S^{2-}$ ratio requirement is that the AFBR effluent contains sulfide, phosphorus, hydroxide and bicarbonate which can react with $Fe^{3+}$ competitively. Concentrations of sulfide and phosphorous reduced to below 0.1 and 0.5 mg/L, respectively, at the $Fe^{3+}/S^{2-}$ ratio of 2.0. Average effluent COD of 80 mg/L, mostly soluble COD, was obtained at the dosage 50 mg $Fe^{3+}/L$ ($Fe^{3+}/S^{2-}$ ratio of 2.0) with corresponding COD removal of 55%. For better removal of COD, soluble COD removal at the AFBR should be enhanced. Coagulation with $Fe^{3+}$ removed sulfide, phosphorus and COD simultaneously in the AFBR effluent, and thus could be an alternative process for the conventional wastewater treatment processes where relatively high quality effluent is not required.

The Newest Technology Development and Commercialization Status of Coal Gasification (석탄가스화 기술의 최신 개발 동향 및 상업화 현황)

  • Lee, Jin-Wook;Yun, Yongseung;Kang, Won-seok
    • Journal of Energy Engineering
    • /
    • v.24 no.3
    • /
    • pp.150-163
    • /
    • 2015
  • Gasification technology is one of the representative next-generation fossil fuel utilization technologies, converting low grade fossil fuels such as coal, heavy residue oil, pet-coke into highly clean and efficient energy sources. Accordingly, related market demand for gasification technology is ever increasing steadily and rapidly. A few years ago, conventional pulverized coal utilization technology had an edge over the gasification technology but the most significant technical barrier of limited capacity and availability has been largely overcome nowadays. Futhermore, it will be more competitive in the future with the advancement of related technologies such as gas turbine, ion transfer membrane and so on. China has recently completed a commercialization-capable large-scale coal gasification technology for its domestic market expansion and foreign export, rapidly becoming a newcomer in the field and competing with existing US and EU technical leadership at comparable terms. Techno-economic aspect deserves intensive attention and steady R&D efforts need to continue in organized, considering that gasification technology is quite attractive combined with $CO_2$ capture process and coal to SNG plant is economically viable in Korea where natural gas is very expensive. In the present paper, recent technology development and commercialization trend of many leading companies with coal gasification expertise have been reviewed with significant portion of literature cited from the recently held '2014 Gasification Technology Conference'.

Physicochemical Characteristics of Steamed Prunus mume Powder Granules in a Fluid-Bed Granulator (유동층조립기를 이용한 금매분말과립의 물리·화학적 특성)

  • Shin, Myung-Gon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.5
    • /
    • pp.700-705
    • /
    • 2012
  • $Prunus$ $mume$ was steamed for easier removal of the pulp. The steamed fruit pulp was vacuum dried and powdered. The steamed $Prunus$ $mume$ powder (SPP) was passed through a 250 ${\mu}m$ sieve, fluidized in a fluid-bed granulator, and then granulated by top-spraying with water (SPPGW) or the extract obtained from steam (SPPGE). Then the physicochemical and sensory properties of SPP, SPPGW, and SPPGE were evaluated. The flowability of powder (angle of repose $^{\circ}$) of SPP, SPPGW and SPPGE was $23.59^{\circ}$, $11.07^{\circ}$, and $13.94^{\circ}$, respectively. The water dispersibility of SPP, SPPGW, and SPPGE was 18.69, 10.04 and 6.00 sec, respectively. Also, the overall acceptance of SPP, SPPGW and SPPGE was 3.00, 3.44 and 6.56, respectively. In conclusion, SPPGE can be used as granular steamed whole fruit pulp with good powder flowability and dispersibility, and therefore consumer acceptance.

A Basic Study on the Development of Backfill Material with Fly Ash and Bottom Ash of Circulating Fluid Bed Combustion (순환유동층보일러의 Fly Ash, Bottom Ash를 활용한 채움재 개발에 관한 기초연구)

  • Cho, Yong-Kwang;Lee, Yong-Mu;Nam, Seong-Young;Kim, Chun-Sik;Seo, Shin-Seok;Jo, Sung-Hyun;Lee, Hyoung-Woo;Ahn, Ji-Whan
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.1
    • /
    • pp.25-31
    • /
    • 2018
  • In this study, the Controlled Low Strength Material (CLSM) was investigated to utilize the bottom ash and fly ash generated in the Circulating Fluidized Bed Combustor (CFBC). It was confirmed that the CFBC fly ash (CFBC-F) and CFBC bottom ash (CFBC-B) had an irregular particle shape through SEM measurement. According to the results of the hazard analysis, it was also confirmed that they were environmentally safe. In the case of mixing with CFBC-F, the unit quantity was increased. Regarding the rate of change of length, shrinkage in the range of -0.05~0.50% occurred in the air dry curing condition and expansion in the range of 0.1~0.6% in the sealed curing condition. Compressive strength was increased in the sealed curing condition compared to the air dry curing condition because there was enough moisture for hydration reaction in the long term. Therefore, the results of this study are likely be used as basic research data of mine filler materials.