• 제목/요약/키워드: fluid-structure-ground interaction

검색결과 33건 처리시간 0.022초

Comparison of uniform and spatially varying ground motion effects on the stochastic response of fluid-structure interaction systems

  • Bilici, Yasemin;Bayraktar, Alemdar;Adanur, Suleyman
    • Structural Engineering and Mechanics
    • /
    • 제33권4호
    • /
    • pp.407-428
    • /
    • 2009
  • The effects of the uniform and spatially varying ground motions on the stochastic response of fluid-structure interaction system during an earthquake are investigated by using the displacement based fluid finite elements in this paper. For this purpose, variable-number-nodes two-dimensional fluid finite elements based on the Lagrangian approach is programmed in FORTRAN language and incorporated into a general-purpose computer program SVEM, which is used for stochastic dynamic analysis of solid systems under spatially varying earthquake ground motion. The spatially varying earthquake ground motion model includes wave-passage, incoherence and site-response effects. The effect of the wave-passage is considered by using various wave velocities. The incoherence effect is examined by considering the Harichandran-Vanmarcke and Luco-Wong coherency models. Homogeneous medium and firm soil types are selected for considering the site-response effect where the foundation supports are constructed. A concrete gravity dam is selected for numerical example. The S16E component recorded at Pacoima dam during the San Fernando Earthquake in 1971 is used as a ground motion. Three different analysis cases are considered for spatially varying ground motion. Displacements, stresses and hydrodynamic pressures occurring on the upstream face of the dam are calculated for each case and compare with those of uniform ground motion. It is concluded that spatially varying earthquake ground motions have important effects on the stochastic response of fluid-structure interaction systems.

해저지진의 수직지반운동에 의한 부유식 해양구조물의 지진응답 해석기법 개발 (Analysis of Earthquake Responses of a Floating Offshore Structure Subjected to a Vertical Ground Motion)

  • 이진호;김재관;진병무
    • 한국지진공학회논문집
    • /
    • 제18권6호
    • /
    • pp.279-289
    • /
    • 2014
  • Considering a rigorously fluid-structure interaction, a method for an earthquake response analysis of a floating offshore structure subjected to vertical ground motion from a seaquake is developed. Mass, damping, stiffness, and hydrostatic stiffness matrices of the floating offshore structure are obtained from a finite-element model. The sea water is assumed to be a compressible, nonviscous, ideal fluid. Hydrodynamic pressure, which is applied to the structure, from the sea water is assessed using its finite elements and transmitting boundary. Considering the fluid-structure interaction, added mass and force from the hydrodynamic pressure is obtained, which will be combined with the numerical model for the structure. Hydrodynamic pressure in a free field subjected to vertical ground motion and due to harmonic vibration of a floating massless rigid circular plate are calculated and compared with analytical solutions for verification. Using the developed method, the earthquake responses of a floating offshore structure subjected to a vertical ground motion from the seaquake is obtained. It is concluded that the earthquake responses of a floating offshore structure to vertical ground motion is severely influenced by the compressibility of sea water.

직사각형 단면을 갖는 유체 저장 구조물의 거동에 관한 연구 (A Study on Behavior of Rectangular Liquid Storage Structures)

  • 박장호
    • 한국안전학회지
    • /
    • 제18권1호
    • /
    • pp.101-107
    • /
    • 2003
  • Dynamic behavior of flexible rectangular liquid storage structures is analysed by the developed method. The rectangular liquid storage structures are assumed to be fixed to the ground and a moving coordinate system is used. The irrotational motion of invicid and incompressible ideal fluid is represented by two analytic solutions. One is the solution of the fluid motion in the rigid rectangular liquid storage structure due to ground motions and the other is the solution of the fluid motion by the motion of the wall in the flexible rectangular liquid storage structure. The motion of structure is modeled by finite elements. The fluid-structure interaction effect is reflected into the coupled equation of motion as added fluid mass matrix. The free surface sloshing motion and hydrodynamic pressure acting on the wall in the flexible rectangular liquid storage structure due to the horizontal ground motion are obtained by the developed method and verified.

Evaluation of dynamic behaviors of gravity-based structures under seismic load considering fluid-structure-ground interactions

  • Hyo-Jin Kim;Sunghun Jung;Seongpil Cho
    • Structural Engineering and Mechanics
    • /
    • 제88권3호
    • /
    • pp.251-262
    • /
    • 2023
  • This paper presents a method for assessing the dynamic responses of gravity-based structures (GBS) under various seismic loads, with a focus on fluid-structure-ground interactions. Models of GBSs and their surrounding environments were developed, incorporating interaction effects among the structure, seawater, and seabed. Dynamic responses of the GBS subjected to three seismic loads-Chi-Chi, Northridge01, and Northridge02-were calculated, with consideration of both horizontal and vertical accelerations, as well as displacements. Parametric studies indicated that the primary factors affecting the dynamic responses of GBS were seismic loads characterized by significant input forces and accelerations. The frictional force on the ground had minimal impact on the horizontal and vertical displacements of the GBS. Weight emerged as a critical factor in anchoring the GBS to the ground and minimizing vertical accelerations and displacements.

Fluid-structure-soil interaction analysis of cylindrical liquid storage tanks subjected to horizontal earthquake loading

  • Kim, Jae-Min;Chang, Soo-Hyuk;Yun, Chung-Bang
    • Structural Engineering and Mechanics
    • /
    • 제13권6호
    • /
    • pp.615-638
    • /
    • 2002
  • This paper presents a method of seismic analysis for a cylindrical liquid storage structure considering the effects of the interior fluid and exterior soil medium in the frequency domain. The horizontal and rocking motions of the structure are included in this study. The fluid motion is expressed in terms of analytical velocity potential functions, which can be obtained by solving the boundary value problem including the deformed configuration of the structure as well as the sloshing behavior of the fluid. The effect of the fluid is included in the equation of motion as the impulsive added mass and the frequency-dependent convective added mass along the nodes on the wetted boundary of the structure. The structure and the near-field soil medium are represented using the axisymmetric finite elements, while the far-field soil is modeled using dynamic infinite elements. The present method can be applied to the structure embedded in ground as well as on ground, since it models both the soil medium and the structure directly. For the purpose of verification, earthquake response analyses are performed on several cases of liquid tanks on a rigid ground and on a homogeneous elastic half-space. Comparison of the present results with those by other methods shows good agreement. Finally, an application example of a reinforced concrete tank on a horizontally layered soil with a rigid bedrock is presented to demonstrate the importance of the soil-structure interaction effects in the seismic analysis for large liquid storage tanks.

기초격리된 직사각형 유체 저장 구조물의 동적 해석 (Dynamic Analysis of Base-Isolated Rectangular Liquid Storage Structures)

  • 박장호
    • 한국안전학회지
    • /
    • 제19권4호
    • /
    • pp.109-116
    • /
    • 2004
  • The dynamic behavior of the rectangular liquid storage structure is known to be greatly influenced by fluid-structure interaction. By mounting the liquid storage structure on the properly designed base isolators, dynamic response of the superstructure can be reduced. However, base isolators inevitably incur large displacement of the structure to the ground ·ind may give adverse effects on the sloshing height. This paper presents the analysis method for fluid-structure-isolator interaction in base-isolated rectangular liquid storage structures. In the method, the irrotational motion of invicid and incompressible ideal fluid is expressed by analytic solutions and the superstructure and isolators are properly modeled by finite element and bilinear model. Free surface sloshing motion, hydrodynamic pressure acting on the wall and structural response are obtained by the presented method.

Stochastic analysis of fluid-structure interaction systems by Lagrangian approach

  • Bayraktar, Alemdar;Hancer, Ebru
    • Structural Engineering and Mechanics
    • /
    • 제20권4호
    • /
    • pp.389-403
    • /
    • 2005
  • In the present paper it is aimed to perform the stochastic dynamic analysis of fluid and fluidstructure systems by using the Lagrangian approach. For that reason, variable-number-nodes twodimensional isoparametric fluid finite elements are programmed in Fortran language by the authors and incorporated into a general-purpose computer program for stochastic dynamic analysis of structure systems, STOCAL. Formulation of the fluid elements includes the effects of compressible wave propagation and surface sloshing motion. For numerical example a rigid fluid tank and a dam-reservoir interaction system are selected and modeled by finite element method. Results obtained from the modal analysis are compared with the results of the analytical and numerical solutions. The Pacoima Dam record S16E component recorded during the San Fernando Earthquake in 1971 is used as a ground motion. The mean of maximum values of displacements and hydrodynamic pressures are compared with the deterministic analysis results.

수평 및 수직 지반운동을 받는 직사각형 유체 저장 구조물의 동적 해석 (Dynamic Analysis of Rectangular Liquid Storage Structures Excited by Horizontal and Vertical Ground Motions)

  • 박장호
    • 한국안전학회지
    • /
    • 제19권3호
    • /
    • pp.108-117
    • /
    • 2004
  • Dynamic analysis method is Presented for analyzing rectangular liquid storage structures excited by horizontal and vertical ground motions. The irrotational motion of invicid and incompressible ideal fluid in rigid rectangular liquid storage structures subjected to horizontal and vertical ground motions and the motion of fluid induced by structural deformation are expressed by analytic solutions. Analysis methods are obtained by applying analytic solutions of the fluid motion to finite element equation of the structural motion. The fluid-structure interaction effect is reflected into the coupled equation as added fluid mass matrix. The free surface sloshing motion, hydrodynamic pressure acting on the wall and structural behavior due to horizontal and vertical ground motions are obtained by the presented method.

지반-구조물 상호작용을 고려한 원통형 유체저장탱크의 지진해석 (Earthquake Analaysis of Cylindrical Liquid Storage tanks Considering Effects of Soil-Structure Interaction)

  • 김재민
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1999년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall
    • /
    • pp.83-90
    • /
    • 1999
  • This paper presents a method of seismic analysis for a cylindrical liquid storage structure on horizontally layered half-space considering the effects of the interior fluid and exterior soil medium in the frequency domain. the horizontal and rocking motions of the structures are included in this study. The fluid motion is expressed in terms of analytical velocity potential function which can be obtained by solving the boundary value problem including the sloshing behavior of the fluid as well as deformed configuration of the structure. The effect of the fluid is included in the equation of motion as the impulsive added mass and a frequency-dependent convective added mass along the nodes on the wetted boundary with structure. The soil medium is presented using the 3-D axisymmetric finite elements and dynamic infinite elements. The present method can be applied to the structures embedded in ground as well as on ground since it models the soil medium directly as well as the structure. For the purpose of vertification dynamci characteristics of a tank on homogeneous half-space is analyzed. Comparison of the present results with those by others shows good agreement.

  • PDF

유체-구조물 상호작용을 고려한 면진구조물의 추계학적 응답해석 (Stochastic Analysis of Base-Isolated Pool Structure Considering Fluid-Structure Interaction Effects)

  • 고현무;김재관;박관순;하동호
    • 대한토목학회논문집
    • /
    • 제14권3호
    • /
    • pp.463-472
    • /
    • 1994
  • Random 지반운동에 대한 면진수조구조물 응답의 추계학적 해석방법을 연구하였다. 유연한 벽체와 내부유체간의 유체구조물 상호작용은 유체운동의 유한요소 모델링에 의하여 얻어지는 부가질량행렬 형태로 고려되었다. 정상(定常)(Stationary)지반운동으로는 수정된 Clough-Penzien Spectral Model이 사용되었으며, 비정상(非定常)(Nonstationary)지반운동으로는 상기모델에 포락함수를 적용한 모델을 사용하였다. 운동을 지배하는 Lyapunov Covariance Matrix 미분방정식의 해를 구하여 두 종류 면진시스템의 정상응답 및 비정상응답을 해석하였다.

  • PDF