DOI QR코드

DOI QR Code

Evaluation of dynamic behaviors of gravity-based structures under seismic load considering fluid-structure-ground interactions

  • Hyo-Jin Kim (Center for Healthcare Robotics, Korea Institute of Science and Technology) ;
  • Sunghun Jung (Ship & Offshore Research Institute, Samsung Heavy Industries) ;
  • Seongpil Cho (School of Aerospace and Mechanical Engineering, Korea Aerospace University)
  • Received : 2023.09.14
  • Accepted : 2023.10.13
  • Published : 2023.11.10

Abstract

This paper presents a method for assessing the dynamic responses of gravity-based structures (GBS) under various seismic loads, with a focus on fluid-structure-ground interactions. Models of GBSs and their surrounding environments were developed, incorporating interaction effects among the structure, seawater, and seabed. Dynamic responses of the GBS subjected to three seismic loads-Chi-Chi, Northridge01, and Northridge02-were calculated, with consideration of both horizontal and vertical accelerations, as well as displacements. Parametric studies indicated that the primary factors affecting the dynamic responses of GBS were seismic loads characterized by significant input forces and accelerations. The frictional force on the ground had minimal impact on the horizontal and vertical displacements of the GBS. Weight emerged as a critical factor in anchoring the GBS to the ground and minimizing vertical accelerations and displacements.

Keywords

Acknowledgement

We thank Professor Phill-Seung Lee at Korea Advanced Institute of Science and Technology (KAIST) for the valuable discussion and comments. This research was performed by the Samsung Heavy Industry (SHI)-KAIST research collaboration program. This research was also supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2022R1A6A1A0305678412 and 2022R1C1C2006328).

References

  1. ADINA R&D, Inc. (2010), Theory and Modeling Guide, Report ARD 10-7, Vol. I.
  2. Ahmad, O. (2022), "An overview of design, construction and installation of gravity offshore platforms", Int. J. Adv. Eng. Sci. Appl., 3(1), 27-32. https://doi.org/10.47346/ijaesa.v3i1.81. 
  3. Ancheta, T.D., Darragh, R.B., Stewart, J.P., Seyhan, E., Silva, W.J., Chiou, B.S.J., ... & Donahue, J.L. (2014), "NGA-West2 database", Earthq. Spectra, 30(3), 989-1005. https://doi.org/10.1193/070913EQS197M. 
  4. Boore, D.M., Stewart, J.P., Seyhan, E. and Atkinson, G.M. (2014), "NGA-West2 equations for predicting PGA, PGV, and 5% damped PSA for shallow crustal earthquakes", Earthq. Spectra, 30(3), 1057-1085. https://doi.org/10.1193/070113EQS184M. 
  5. Bozorgnia, Y., Abrahamson, N.A., Atik, L.A., Ancheta, T.D., Atkinson, G.M., Baker, J.W. ... and Youngs, R. (2014), "NGAWest2 research project", Earthq. Spectra, 30(3), 973-987. https://doi.org/10.1193/072113EQS209M. 
  6. Campbell, K.W. and Bozorgnia, Y. (2014), "NGA-West2 ground motion model for the average horizontal components of PGA, PGV, and 5% damped linear acceleration response spectra", Earthq. Spectra, 30(3), 1087-1115. https://doi.org/10.1193/062913EQS175M. 
  7. Cho, K.N. (2002), "Mass perturbation influence method for dynamic analysis of offshore structures", Struct. Eng. Mech., 13(4), 429-436. https://doi.org/10.12989/sem.2002.13.4.429. 
  8. Cui, L., Jeng, D.S. and Liu, J. (2022), "Numerical analysis of the seabed liquefaction around a fixed gravity-based structure (GBS) of an offshore platform and protection", Ocean Eng., 249, 110844. https://doi.org/10.1016/j.oceaneng.2022.110844. 
  9. Danmeier, D.G., Seah, R.K., Finnigan, T., Roddier, D., Aubault, A., Vache, M. and Imamura, J.T. (2008), "Validation of wave run-up calculation methods for a gravity based structure", Int. Conf. Offsh. Mech. Arctic Eng., 48234, 265-274. https://doi.org/10.1115/OMAE2008-57625. 
  10. Esteban, M.D., Counago, B., Lopez-Gutierrez, J.S., Negro, V. and Vellisco, F. (2015), "Gravity based support structures for offshore wind turbine generators: Review of the installation process", Ocean Eng., 110, 281-291. https://doi.org/10.1016/j.oceaneng.2015.10.033. 
  11. Esteban, M.D., Lopez-Gutierrez, J.S. and Negro, V. (2019), "Gravity-based foundations in the offshore wind sector", J. Mar. Sci. Eng., 7(3), 64. https://doi.org/10.3390/jmse7030064. 
  12. Hasan, S.D., Islam, N. and Moin, K. (2010), "A review of fixed offshore platforms under earthquake forces", Struct. Eng. Mech., 35(4), 479-491. https://doi.org/10.12989/sem.2010.35.4.479. 
  13. Hasheminezhad, A. and Bahadori, H. (2019), "Seismic response of shallow foundations over liquefiable soils improved by deep soil mixing columns", Comput. Geotech., 110, 251-273. https://doi.org/10.1016/j.compgeo.2019.02.019. 
  14. Kim, M.G., Lee, K.H., Kim, S.G., Woo, I.G., Han, J.H., Lee, P.S. and Lee, J.I. (2014), "Conceptual studies of construction and safety enhancement of ocean SMART mounted on GBS", Nucl. Eng. Des., 278, 558-572. https://doi.org/10.1016/j.nucengdes.2014.08.014. 
  15. Lapp, C.W. and Golay, M.W. (1997), "Modular design and construction techniques for nuclear power plants", Nucl. Eng. Des., 172, 327-349. https://doi.org/10.1016/S0029-5493(97)00031-9. 
  16. Lee, H.H. (1998), "Seismic and vibration mitigation for the A-type offshore template platform system", Struct. Eng. Mech., 6(3), 347-362. https://doi.org/10.12989/sem.1998.6.3.347. 
  17. Lee, K., Lee, K.H., Lee, J.I., Jeong, Y.H. and Lee, P.S. (2013), "A new design for offshore nuclear power plants with enhanced safety features", Nucl. Eng. Des., 254, 129-141. https://doi.org/10.1016/j.nucengdes.2012.09.011. 
  18. Lim, W.Z. and Xiao, R.Y. (2016), "Fluid-structure interaction analysis of gravity-based structure (GBS) offshore platform with partitioned coupling method", Ocean Eng., 114, 1-9. https://doi.org/10.1016/j.oceaneng.2015.12.059. 
  19. Makitie, T., Andersen, A.D., Hanson, J., Normann, H.E. and Thune, T.M. (2017), "Established sectors expediting clean technology industries? The Norwegian oil and gas sector's influence on offshore wind power", J. Clean. Prod., 177, 813-823. https://doi.org/10.1023/B:BEEE.0000021426.31223.60. 
  20. Manabe, H. and Sakura, T. (2007), "Seismic analysis of an SPB tank installed in the offshore GBS LNG terminal", IHI Eng. Rev., 40(2), 69. 
  21. Manzari, M.T., Arulanandan, K. and Scott, R.F. (1994), "VELACS project: A summary of achievements", Proceedings From the Fifth US-Japan Workshop on Earthquake Resistant Design of Lifeline Facilities and Countermeasures Against Liquefaction. Buffalo, USA. 
  22. Masi, A. (2003), "Seismic vulnerability assessment of gravity load designed R/C frames", Bull. Earthq. Eng., 1, 371-395. https://doi.org/10.1023/B:BEEE.0000021426.31223.60. 
  23. O'Riordan, N.J. and Clare, D.G. (1990), "Geotechnical considerations for the installation of gravity base structures", Offshore Technology Conference, May. 
  24. Oslon, L.G. and Bathe, K.J. (1985), "Analysis of fluid-structure interaction. A direct symmetric coupled formulation based on the fluid velocity potential", Comput. Struct., 21, 219-240. https://doi.org/10.1016/0045-7949(85)90226-3. 
  25. Perez-Fernandez, R. and Lamas-Pardo, M. (2018), "Offshore concrete structures", Ocean Eng., 58, 304-316. https://doi.org/10.1016/j.oceaneng.2012.11.007. 
  26. Popescu, R. and Prevost, J.H. (1993), "Centrifuge validation of a numerical model for dynamic soil liquefaction", Soil Dyn. Earthq. Eng., 12(2), 73-90. https://doi.org/10.1016/0267-7261(93)90047-U. 
  27. Popescu, R. and Prevost, J.H. (1995), "Comparison between VELACS numerical 'class A' predictions and centrifuge experimental soil test results", Soil Dyn. Earthq. Eng., 14(2), 79-92. https://doi.org/10.1016/0267-7261(94)00038-I. 
  28. Sayed, M.A., Go, S., Cho, S.G. and Kim, D. (2015), "Seismic responses of base-isolated nuclear power plant structures considering spatially varying ground motions", Struct. Eng. Mech., 54(1), 169-188. https://doi.org/10.12989/sem.2015.54.1.169. 
  29. Tamayo, J.L.P. and Awruch, A.M. (2016), "Numerical simulation of reinforced concrete nuclear containment under extreme loads", Struct. Eng. Mech., 58(5), 799-823. https://doi.org/10.12989/sem.2016.58.5.799. 
  30. Tian, Z., Liu, F., Zhou, L. and Yuan, C. (2020), "Fluid-structure interaction analysis of offshore structures based on separation of transferred responses", Ocean Eng., 195, 106598. https://doi.org/10.1016/j.oceaneng.2019.106598. 
  31. Zheng, X.Y., Lei, Y. (2018), "Stochastic response analysis for a floating offshore wind turbine integrated with a steel fish farming cage", Appl. Sci., 8, 1228. https://doi.org/10.3390/app8081229.