• Title/Summary/Keyword: fluid-structure

Search Result 2,106, Processing Time 0.026 seconds

Computational modeling of coupled fluid-structure systems with applications

  • Kerboua, Y.;Lakis, A.A.;Thomas, M.;Marcouiller, L.
    • Structural Engineering and Mechanics
    • /
    • v.29 no.1
    • /
    • pp.91-111
    • /
    • 2008
  • This paper outlines the development of a computational model in order to analyze the dynamic behaviour of coupled fluid-structure systems such as a) liquid containers, b) a set of parallel or radial plates. In this work a hybrid fluid-solid element is developed, capable of simulating both membrane and bending effects of the plate. The structural mass and stiffness matrices are determined using exact integration of governing equations which are derived using a combination of classical plate theory and a finite element approach. The Bernoulli equation and velocity potential function are used to describe the liquid pressure applied on the solid-fluid element. An impermeability condition assures a permanent contact at the fluid-structure interface. Applications of this model are presented for both parallel and radial plates as well as fluid-filled rectangular reservoir. The effect of physical parameters on the dynamic behaviour of a coupled fluid-structure system is investigated. The results obtained using the presented approach for dynamic characteristics such as natural frequency are in agreement to those calculated using other theories and experiments.

Numerical modelling for evaluating the TMD performance in an industrial chimney

  • Iban, A.L.;Brownjohn, J.M.W.;Belver, A.V.;Lopez-Reyes, P.M.;Koo, K.
    • Wind and Structures
    • /
    • v.17 no.3
    • /
    • pp.263-274
    • /
    • 2013
  • A numerical technique for fluid-structure interaction, which is based on the finite element method (FEM) and computational fluid dynamics (CFD), was developed for application to an industrial chimney equipped with a pendulum tuned mass damper (TMD). In order to solve the structural problem, a one-dimensional beam model (Navier-Bernoulli) was considered and, for the dynamical problem, the standard second-order Newmark method was used. Navier-Stokes equations for incompressible flow are solved in several horizontal planes to determine the pressure in the boundary of the corresponding cross-section of the chimney. Forces per unit length were obtained by integrating the pressure and are introduced in the structure using standard FEM interpolation techniques. For the fluid problem, a fractional step scheme based on a second order pressure splitting has been used. In each fluid plane, the displacements have been taken into account considering an Arbitrary Lagrangian Eulerian approach. The stabilization of convection and diffusion terms is achieved by means of quasi-static orthogonal subscales. For each period of time, the fluid problem was solved and the geometry of the mesh of each fluid plane is updated according to the structure displacements. Using this technique, along-wind and across-wind effects have been properly explained. The method was applied to an industrial chimney in three scenarios (with or without TMD and for different damping values) and for two wind speeds, showing different responses.

A general approach for studying the motion of a cantilever beam interacting with a 2D fluid flow

  • Baudille, Riccardo;Biancolini, Marco Evangelos
    • Interaction and multiscale mechanics
    • /
    • v.1 no.4
    • /
    • pp.449-465
    • /
    • 2008
  • In this paper a general approach for studying the motion of a cantilever beam interacting with a 2D fluid flow is presented. The fluid is solved by a general purpose commercial computational fluid dynamics (CFD) package (FLUENT 6.2), while the structure is managed by means of a dedicated finite element method solver, coded in FLUENT as a user-defined function (UDF). A weak fluid structure interaction coupling scheme is adopted exchanging information at the end of each time step. An arbitrary cantilever beam can be introduced in the CFD mesh with its wetted boundaries specified; the cantilever can also interact with specified rigid and flexible walls through use of a non-linear contact algorithm. After a brief review of relevant scientific contributions, some test cases and application examples are presented.

Coupled Vibration of Functionally Graded Cylindrical Shells Conveying Fluid (유체 유동을 고려한 경사기능재료 원통셸의 연성진동)

  • Kim, Young-Wann;Kim, Kyu-Ho;Wi, Eun-Jung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.11
    • /
    • pp.1119-1125
    • /
    • 2009
  • The coupled fluid-structure interaction problem is analyzed using the theoretical method to investigate the coupled vibration characteristics of functionally graded material(FGM) cylindrical shells conveying an incompressible, inviscid fluid. Material properties are assumed to vary continuously through the thickness according to a power law distribution in terms of the volume fraction of the constituents. The steady flow of fluid is described by the classical potential flow theory. The motion of shell represented by the first order shear deformation theory(FSDT) to account for rotary inertia and transverse shear strains. The effect of internal fluid can be taken into consideration by imposing a relation between the fluid pressure and the radial displacement of the structure at the interface. Numerical examples are presented and compared with exiting results.

Stochastic analysis of fluid-structure interaction systems by Lagrangian approach

  • Bayraktar, Alemdar;Hancer, Ebru
    • Structural Engineering and Mechanics
    • /
    • v.20 no.4
    • /
    • pp.389-403
    • /
    • 2005
  • In the present paper it is aimed to perform the stochastic dynamic analysis of fluid and fluidstructure systems by using the Lagrangian approach. For that reason, variable-number-nodes twodimensional isoparametric fluid finite elements are programmed in Fortran language by the authors and incorporated into a general-purpose computer program for stochastic dynamic analysis of structure systems, STOCAL. Formulation of the fluid elements includes the effects of compressible wave propagation and surface sloshing motion. For numerical example a rigid fluid tank and a dam-reservoir interaction system are selected and modeled by finite element method. Results obtained from the modal analysis are compared with the results of the analytical and numerical solutions. The Pacoima Dam record S16E component recorded during the San Fernando Earthquake in 1971 is used as a ground motion. The mean of maximum values of displacements and hydrodynamic pressures are compared with the deterministic analysis results.

Static Aeroelastic analysis of Morphing flap wign through FSI analysis method (FSI를 이용한 모핑 플랩 날개의 정적 공탄성 해석)

  • Kim, Jonghwan;Ko, Seughee;Bae, Jaesung;Hwang, Jaihyuk
    • Journal of Aerospace System Engineering
    • /
    • v.6 no.4
    • /
    • pp.1-6
    • /
    • 2012
  • The morphing flap wing has different structure unliked general wing structure. The actuated chord length of the morphing flap was more longer than conventional wing flap. In this reason, morphing flap wing structure was important to bending moment by aerodynamic lift force. In this study, through the fluid-structure interaction using computational fluid dynamics and structure finite element analysis to apply that the morphing flap wing's static aeroelastic stability analysis.

A study of the triangular cross section type greenhouse using fluid-structure interaction (유체-구조 연성해석을 통한 삼각단면 형상의 비닐하우스에 관한 연구)

  • Lee, GyuHan;Kim, Jeong Jae;Kim, Jeongju;Lee, Sang Joon;Ha, Hojin;Kang, TaeWon
    • Journal of the Korean Society of Visualization
    • /
    • v.17 no.2
    • /
    • pp.17-24
    • /
    • 2019
  • The purpose of this study is to study the fluid-dynamic and structural characteristics of the conventional greenhouse and to find possible improvement on the current greenhouse. The greenhouse is required to have enough rigidity of the structure while the installation and reinforcement should be as easy as possible. In this study, the structural stability to the snow load was tested through the computational structure analysis based on the building structure standard, and the wind load was computed by computational fluid-structure interaction analysis. The current analysis can be used as a reference data for a new greenhouse and it will be economically viable by reducing installation and maintenance costs.

Numerical simulation of deformable structure interaction with two-phase compressible flow using FVM-FEM coupling (FVM-FEM 결합 기법을 이용한 압축성 이상 유동과 변형 가능한 구조물의 상호작용 수치해석)

  • Moon, Jihoo;Kim, Daegyoum
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.3
    • /
    • pp.35-41
    • /
    • 2020
  • We conduct numerical simulations of the interaction of a deformable structure with two-phase compressible flow. The finite volume method (FVM) is used to simulate fluid phenomena including a shock wave, a gas bubble, and the deformation of free surface. The deformation of a floating structure is computed with the finite element method (FEM). The compressible two-phase volume of fluid (VOF) method is used for the generation and development of a cavitation bubble, and the immersed boundary method (IBM) is used to impose the effect of the structure on the fluid domain. The result of the simulation shows the generation of a shock wave, and the expansion of the bubble. Also, the deformation of the structure due to the hydrodynamic loading by the explosion is identified.

Study on Vibration Characteristics of Fluid Tank Structure for Ship (유체 탱크 구조물의 접수 진동 특성에 관한 연구)

  • Seo, Myeng-Kab;Seok, Ho-Il;Lee, Chul-Won
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2013.12a
    • /
    • pp.85-89
    • /
    • 2013
  • In the engine room and the aft body, there are so many fluid tanks such as fresh water tank and oil tank. The vibration analysis for the fluid tank structures has to consider the added mass effect due to the fluid. However, it is known that the result of the fluid tank has the difference according to the boundary condition of the fluid field such as infinite fluid and finite fluid. In this paper, a numerical case study is carried out for the research about the vibration characteristics of the fluid tank with various fluid field. In addition, an experimental study is carried out to verify the validity of the vibration analysis for the fluid tank structure.

  • PDF

A Study on the Vibration Characteristics of 3-Dimension Submerged Vehicle in Consideration of Fluid-Structure Interaction (유체력을 고려한 3차원 수중압력선체의 진동특성에 관한 연구)

  • 손충렬;김경수;변효인
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.1
    • /
    • pp.19-25
    • /
    • 2001
  • Unlike structures in the air, the vibration analysis of a submerged or floating structure such as offshore structures or ships is possible only when the fluid-structure interaction is understood, as the whole or part of the structure is in contact with water. This paper introduces two methods to find natural frequency in consideration of fluid-structure interaction, direct coupled vibration analysis and fluid-structure modal coupled vibration analysis. The purpose of this study is to analyze the vibration characteristic of a submerged vehicle to obtain the anti-vibration design data, which could be used in the preliminary design stage. The underwater pressure hull of submerged vehicle is used as the model of this study. The F.E.M. model is meshed by shell and beam elements. Also, considering the inner hull weight, the mass element is distributed in the direction of hull length. Numerical calculations are accomplished by using the commercial B.E.M. code. The characteristics of natural frequency, mode shape and frequency-displacement response are analyzed.

  • PDF