• Title/Summary/Keyword: fluid resistance

Search Result 624, Processing Time 0.025 seconds

Selection of Centrifugal Fan for Flows with Down-Stream Resistance (유동 저항에 따른 원심홴의 선정)

  • Kim Jae-Won;Jang Dong-Hee;Ahn Eun-Young
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.3 s.36
    • /
    • pp.44-48
    • /
    • 2006
  • Comprehensive experimental works are carried out for the optimal design of a centrifugal blower adopted in an indoor unit of an air-conditioner. The models for consideration are typical multi-blade turbo blower and limit loaded one, respectively. The main interest lies on the fluid dynamics performance when the blower Is installed in the practical system. The methodologies are an experimental estimations with a wind tunnel for blower performance and PIV measurement for the detail flow information. A centrifugal blower with limit loaded fan shows pronounced performances in terms of the flow rate and static pressure rise and the reason is explained by the precise measurement of the flows between blades using PIV. Consequently, it is found that the blower is proper for the flows with a resistance in down stream such as a heat exchanger.

A VOLUME OF FLUID METHOD FOR FREE SURFACE FLOWS AROUND SHIP HULLS (선체주위 자유수면 유동 해석을 위한 VOF법 연구)

  • Park, I.R.
    • Journal of computational fluids engineering
    • /
    • v.20 no.1
    • /
    • pp.57-64
    • /
    • 2015
  • This paper describes a volume of fluid(VOF) method, mRHRIC for the simulation of free surface flows around ship hulls and provides its validation against benchmark test cases. The VOF method is developed on the basis of RHRIC method developed by Park et al. that uses high resolution differencing schemes to algebraically preserve both the sharpness of interface and the boundedness of volume fraction. A finite volume method is used to solve the governing equations, while the realizable ${\kappa}-{\varepsilon}$ model is used for turbulence closure. The present numerical results of the resistance performance tests for DTMB5415 and KCS hull forms show a good agreement with available experimental data and those of other free surface methods.

Flexible CFD meshing strategy for prediction of ship resistance and propulsion performance

  • Seo, Jeong-Hwa;Seol, Dong-Myung;Lee, Ju-Hyun;Rhee, Shin-Hyung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.2 no.3
    • /
    • pp.139-145
    • /
    • 2010
  • In the present study, we conducted resistance test, propeller open water test and self-propulsion test for a ship's resistance and propulsion performance, using computational fluid dynamics techniques, where a Reynolds-averaged Navier-Stokes equations solver was employed. For convenience of mesh generation, unstructured meshes were used in the bow and stern region of a ship, where the hull shape is formed of delicate curved surfaces. On the other hand, structured meshes were generated for the middle part of the hull and the rest of the domain, i.e., the region of relatively simple geometry. To facilitate the rotating propeller for propeller open water test and self-propulsion test, a sliding mesh technique was adopted. Free-surface effects were included by employing the volume of fluid method for multi-phase flows. The computational results were validated by comparing with the existing experimental data.

Performance Characteristics of a Loop Thermosyphon for Heat Source Cooling (열원 냉각용 루프 써모사이폰의 작동 특성)

  • Choi, Du-Sung;Song, Tae-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.12
    • /
    • pp.1475-1483
    • /
    • 2004
  • Loop thermosyphon(LTS) has many good characteristics such as low thermal resistance, no power consumption, noiseless operation and small size. To investigate the overall performance of LTS, we have performed various experiments varying three parameters: input power of the heater, working fluid(water, ethanol, FC3283) and filling ratio of the working fluid. At a combination of these parameters, temperature measurements are made at many locations of the LTS. The temperature difference between the evaporator and the condenser is used to obtain the thermal resistance. In addition, flow visualization using a high speed camera is carried out. The thermal resistance is not constant. It is lower at higher input power, which is one of the distinct merits of LTS. Flow instabilities are frequently observed when changing the working fluid, the input power and the filling ratio. The results show that the LTS can be readily put into practical use. Future practical application in electronic cooling is recommended.

Prediction of Resistance Performance for Low-Speed Full Ship using Deep Neural Network (심층신경망을 이용한 저속비대선의 저항성능 추정)

  • TaeWon Park;JangHoon Seo;Dong-Woo Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.7
    • /
    • pp.1274-1280
    • /
    • 2022
  • The resistance performance evaluation of general ships using computational fluid dynamics requires a lot of time and cost, and various methods are being studied to reduce the time and cost. Existing methods using main particulars or cross sections of ships have limitations in estimating resistance performance that is greatly dependent on the shape of the ship. In this paper, we propose a deep neural network model that can quickly predict the resistance performance of the hull surface by inputting the geometric information of the hullform mesh. The proposed deep neural network model based on Perceiver IO can immediately predict resistance performance, unlike computational fluid dynamics techniques that require calculation in each time step. It shows the result of estimating the resistance performance with an average error of less than 1% in the data set for a 50 K tanker ship, a type of low-speed full ship.

INFLUENCE OF THE THERMAL CONTACT RESISTANCE ON THE FIN-TUBE HEAT EXCHANGER PERFORMANCE (핀-관 열교환기의 열 접촉저항이 전열성능에 미치는 영향 연구)

  • Yoo, S.S.;Lee, M.S.;Hwang, D.Y.;Han, B.Y.;Park, H.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.135-144
    • /
    • 2009
  • In this study, the heat transfer and fluid flow characteristics of a condenser for a refrigerator are analyzed with the numerical method. The main objective of the study is to obtain basic data in order to develop a new type of condenser focused on an influence of thermal resistance of air side and thermal contact resistance on the heat transfer performance. The CFD technique was used for whole study, and experiments were performed in order to verify the reliability of the numerical analysis and predict the thermal contact resistance. In this study, a heat exchanger sample was made of a part of condenser to make the experimental and numerical analysis simple and efficient. Water was used for the inner working fluid of the heat exchanger, and an experimental apparatus was composed concisely. A heat exchanger sample of tube type was used to verify the reliability of numerical analysis, and a heat exchanger of fin and tube type was used to predict the ratio of thermal contact resistance to the overall thermal resistance.

  • PDF

INFLUENCE OF THE THERMAL CONTACT RESISTANCE ON THE FIN-TUBE HEAT EXCHANGER PERFORMANCE (핀-관 열교환기의 열 접촉저항이 전열성능에 미치는 영향 연구)

  • Yoo, S.S.;Lee, M.S.;Han, B.Y.;Park, H.K.
    • Journal of computational fluids engineering
    • /
    • v.15 no.1
    • /
    • pp.46-55
    • /
    • 2010
  • In this study, the heat transfer and fluid flow characteristics of a condenser for a refrigerator are analyzed with the numerical method. The main objective of the study is to obtain basic data in order to develop a new type of condenser focused on an influence of thermal resistance of air side and thermal contact resistance on the heat transfer performance. The CFD technique was used for whole study, and experiments were performed in order to verify the reliability of the numerical analysis and predict the thermal contact resistance. In this study, a heat exchanger sample was made of a part of condenser to make the experimental and numerical analysis simple and efficient. Water was used for the inner working fluid of the heat exchanger, and an experimental apparatus was composed concisely. A heat exchanger sample of tube type was used to verify the reliability of numerical analysis, and a heat exchanger of fin and tube type was used to predict the ratio of thermal contact resistance to the overall thermal resistance.

Evaluation for Fatigue Resistance of Small Wind Turbine Composite Blade according to GL Guideline (GL Guideline에 의거한 소형 풍력발전용 복합재 블레이드의 피로 저항성 평가)

  • Jang, Yun Jung;Kang, Ki Weon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.4
    • /
    • pp.15-21
    • /
    • 2013
  • This study aims to estimate the fatigue resistance of small wind composite blade using the fatigue life estimation formula in the GL guideline. For this, firstly, we estimated a turbine blade's bending moment spectrum by using wind profile wind profile and BEMT. And fatigue tests were performed to obtain the S-N curve of composite materials used in blade. In addition, a finite element analysis was used to identify fatigue critical locations and fatigue stress spectrum. And the fatigue resistance of composite blade were evaluated using the rainflow cycle counting, and Goodman diagram and the fatigue life estimation formula in the GL guideline.

Investigation of the effects of miniscrew-assisted rapid palatal expansion on airflow in the upper airway of an adult patient with obstructive sleep apnea syndrome using computational fluid-structure interaction analysis

  • Hur, Jae-Sik;Kim, Hyoung-Ho;Choi, Jin-Young;Suh, Sang-Ho;Baek, Seung-Hak
    • The korean journal of orthodontics
    • /
    • v.47 no.6
    • /
    • pp.353-364
    • /
    • 2017
  • Objective: The objective of this study was to investigate the effects of miniscrew-assisted rapid palatal expansion (MARPE) on changes in airflow in the upper airway (UA) of an adult patient with obstructive sleep apnea syndrome (OSAS) using computational fluid-structure interaction analysis. Methods: Three-dimensional UA models fabricated from cone beam computed tomography images obtained before (T0) and after (T1) MARPE in an adult patient with OSAS were used for computational fluid dynamics with fluid-structure interaction analysis. Seven and nine cross-sectional planes (interplane distance of 10 mm) in the nasal cavity (NC) and pharynx, respectively, were set along UA. Changes in the cross-sectional area and changes in airflow velocity and pressure, node displacement, and total resistance at maximum inspiration (MI), rest, and maximum expiration (ME) were investigated at each plane after MARPE. Results: The cross-sectional areas at most planes in NC and the upper half of the pharynx were significantly increased at T1. Moreover, airflow velocity decreased in the anterior NC at MI and ME and in the nasopharynx and oropharynx at MI. The decrease in velocity was greater in NC than in the pharynx. The airflow pressure in the anterior NC and entire pharynx exhibited a decrease at T1. The amount of node displacement in NC and the pharynx was insignificant at both T0 and T1. Absolute values for the total resistance at MI, rest, and ME were lower at T1 than at T0. Conclusions: MARPE improves airflow and decreases resistance in UA; therefore, it may be an effective treatment modality for adult patients with moderate OSAS.

Analysis of the Macroscopic Traffic Flow Changes using the Two-Fluid Model by the Improvements of the Traffic Signal Control System (Two-Fluid Model을 이용한 교통신호제어시스템 개선에 따른 거시적 교통류 변화 분석)

  • Jeong, Yeong-Je;Kim, Yeong-Chan;Kim, Dae-Ho
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.1
    • /
    • pp.27-34
    • /
    • 2009
  • The operational effect of traffic signal control improvement was evaluated using the Two-Fluid Model. The parameters engaged in the Two-Fluid Model becomes food indicators to measure the quality of traffic flow due to the improvement of traffic signal operation. A series of experiment were conduced for the 31 signalized intersections in Uijeongbu City. To estimate the parameters in the Two-Fluid Model the trajectory informations of individual vehicles were collected using the CORSIM and Run Time Extension. The test results showed 35 percent decrease of average minimum trip time per unit distance. One of the parameters in the Two-Fluid Model is a measure of the resistance of the network to the degraded operation with the increased demand. The test result showed 28 percent decrease of this parameter. In spite of the simulation results of the arterial flow, it was concluded that the Two-Fluid Model is useful tool to evaluate the improvement of the traffic signal control system from the macroscopic aspect.