• 제목/요약/키워드: fluid inertia

검색결과 166건 처리시간 0.02초

동심원내에서 진동하는 내부 실린더에 작용하는 유체유발력의 근사적 해법 (An Approximate Analytical Method for Hydrodynamic Forces on Oscillating Inner Cylinder in Concentric Annulus)

  • 심우건
    • 소음진동
    • /
    • 제7권5호
    • /
    • pp.861-869
    • /
    • 1997
  • An approximate analytical method has been developed for estimating hydrodynamic forces acting on oscillating inner cylinder in concentric annulus. When the rigid inner cylinder executes translational oscillation, fluid inertia and damping forces on the oscillating cylinder are generated by unsteady pressure and viscous skin friction. Considering the dynamic-characteristics of unsteady viscous flow and the added mass coefficient of inviscid fluid, these hydrodynamic forces including viscous effect are dramatically simplified and expressed in terms of oscillatory Reynolds number and the geometry of annular configuration. Thus, the viscous effect on the forces can be estimated very easily compared to an existing theory. The forces are calculated by two models developed for relatively high and low oscillatory Reynolds numbers. The model for low oscillatory Reynolds number is suitable for relatively high ratio of the penetration depth to annular space while the model for high oscillatory Reynolds number is applicable to the case of relatively low ratio. It is found that the transient ratio between two models is approximately 0.2~0.25 and the forcea are expressed in terms of oscillatory Reynolds number, explicity. The present results show good agreements with an existing numerical results, especially for high and low penetration ratios to annular gap.

  • PDF

팔당 취수펌프장의 수격현상에 관한 수치해석적 연구 (Numerical Study on the Waterhammer of PalDang Intake Pumping Station)

  • 김경엽;유택인
    • 한국유체기계학회 논문집
    • /
    • 제3권4호
    • /
    • pp.52-58
    • /
    • 2000
  • The numerical study on the waterhammer was carried out for the intake pumping station of the metropolitan water supply 6th stage project. Because the waterhammer problems as a result of the pump power failure were the most important, these situations were carefully investigated. The surge tank and the stand pipes effectively protected the tunnels md the downstream region of pipeline from the pressure surge. In case the moment of inertia of the pump and motor was above $5080\;kg{\cdot}m^2$, the column separation did not occur in the pipeline between the pumping station and the inlet of 1st tunnel. As the moment of inertia increased, the pressure surges decreased in the pipeline conveying raw water. The pump control valve was chosen as the main surge suppression device for the intake pumping station. After power failure, the valve disc should be rapidly closed in 2.5 seconds and controlled the final closure to 15 seconds by the oil dashpot. If the slamming happened to the pump control valve, there was some danger of this system damaging. As the reverse flow through the valve increased, the upsurge extremely increased.

  • PDF

Large Eddy Simulation of the Dynamic Response of an Inducer to Flow Rate Fluctuations

  • Kang, Dong-Hyuk;Yonezawa, Koichi;Ueda, Tatsuya;Yamanishi, Nobuhiro;Kato, Chisachi;Tsujimoto, Yoshinobu
    • International Journal of Fluid Machinery and Systems
    • /
    • 제2권4호
    • /
    • pp.431-438
    • /
    • 2009
  • A Large Eddy Simulation (LES) of the flow in an inducer is carried out under flow rate oscillations. The present study focuses on the dynamic response of the backflow and the unsteady pressure performance to the flow rate fluctuations under non-cavitation conditions. The amplitude of angular momentum fluctuation evaluated by LES is larger than that evaluated by RANS. However, the phase delay of backflow is nearly the same as RANS calculation. The pressure performance curve exhibits a closed curve caused by the inertia effect associated with the flow rate fluctuations. Compared with simplified one dimensional evaluation of the inertia component, the component obtained by LES is smaller. The negative slope of averaged performance curve becomes larger under unsteady conditions. From the conservations of angular momentum and energy, an expression useful for the evaluation of unsteady pressure rise was obtained. The examination of each term of this expression show that the apparent decrease of inertia effects is caused by the response delay of Euler's head and that the increase of negative slope is caused by the delay of inertial term associated with the delay of backflow response. These results are qualitatively confirmed by experiments.

맥동하는 유체를 포함하는 3차원 배관 계의 진동 해석 (Vibration Analysis of A 3-Dimensional Pipe Conveying Pulsating Fluid Flow)

  • 서영수;정의봉;윤상돈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.933-938
    • /
    • 2002
  • A pulsation of fluid in a pipe sometimes causes severe vibration of pipe. The inertia, damping and stiffness characteristics of pipe will be changed by the effect of fluid-structure interaction. The velocity and pressure of fluid will impose the force to a bended shape pipe. In this paper, a pipe with fluid flow is modeled by finite element method and the fluid force from pulsation is also modeled by the fluid dynamics. The vibration of pipe conveying pulsating fluid flow can be estimated by taking into consideration of fluid-structure interaction.

  • PDF

맥동하는 유체를 포함하는 3차원 배관계의 진동해석 (Vibration Analysis of A 3-Dimensional Pipe Conveying Pulsating Fluid Flow)

  • Seo, Young-Soo;Jeong, Weui-Bong;Yoon, Sang-Don
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.391.1-391
    • /
    • 2002
  • A pulsation of fluid in a pipe sometimes cause severe vibration of pipe. The inertia, damping and stiffness characteristics of pipe will be changed by the effect of fluid-structure interaction. The velocity and pressure of fluid will impose the force to a bended shape pipe. In this paper, a pipe with fluid flow is modeled by finite element method and the fluid force from pulsation is also modeled by the fluid dynamics. The vibration of pipe conveying pulsating fluid flow can be estimated by taking into considering of fluid-structure interaction.

  • PDF

Elastically-influenced instabilities in Taylor-Couette and other flows with curved streamlines: a review

  • Muller, Susan J.
    • Korea-Australia Rheology Journal
    • /
    • 제20권3호
    • /
    • pp.117-125
    • /
    • 2008
  • Viscoelastic instabilities are of fundamental importance to understanding the physics of complex fluids and of practical importance to materials processing and fluid characterization. Significant progress has been made over the past 15 years in understanding instabilities in viscoelastic flows with curved streamlines and is reviewed here. Taylor-Couette flow, torsional flow between a cone and plate, and torsional flow between parallel plates have received special attention due to both the basic significance of these flows and their critical role in rheometry. First, we review the criteria for determining when these flows become unstable due to elasticity in the absence of inertia, and discuss the generalization of these criteria to more complex flows with curved streamlines. Then, focusing on experiments and simulations in the Taylor-Couette problem, we review how thermal sensitivity (i.e., the dependence of fluid viscosity and elasticity on temperature) and inertia affect the stability of viscoelastic flows. Finally, we conclude with some general thoughts on unresolved issues and remaining challenges related to viscoelastic instabilities.

중간 지지된 유체 유동 외팔형 원통셸의 임계유속 (Critical Fluid Velocity of Fluid-conveying Cantilevered Cylindrical Shells with Intermediate Support)

  • 김영완
    • 한국소음진동공학회논문집
    • /
    • 제21권5호
    • /
    • pp.422-429
    • /
    • 2011
  • The critical fluid velocity of cantilevered cylindrical shells subjected to internal fluid flow is investigated in this study. The fluid-structure interaction is considered in the analysis. The cantilevered cylindrical shell is supported intermediately at an arbitrary axial position. The intermediate support is simulated by two types of artificial springs: translational and rotational spring. It is assumed that the artificial springs are placed continuously and uniformly on the middle surface of an intermediate support along the circumferential direction. The steady flow of fluid is described by the classical potential flow theory. The motion of shell is represented by the first order shear deformation theory (FSDT) to account for rotary inertia and transverse shear strains. The effect of internal fluid can be considered by imposing a relation between the fluid pressure and the radial displacement of the structure at the interface. Numerical examples are presented and compared with existing results.

적응형 슬라이딩 모드 제어를 이용한 위상 궤적 해석 기반 굴삭기의 안전제어 알고리즘 개발 (Phase Portrait Analysis-Based Safety Control for Excavator Using Adaptive Sliding Mode Control Algorithm)

  • 오광석;서자호;이근호
    • 드라이브 ㆍ 컨트롤
    • /
    • 제15권3호
    • /
    • pp.8-13
    • /
    • 2018
  • This paper presents a phase portrait analysis-based safety control algorithm for excavators, using adaptive sliding mode control. Since working postures and material types cause the excavator's rotational inertia to vary, the rotational inertia was estimated, and this estimation was used to design an adaptive sliding mode controller for collision avoidance of the excavator. In order to estimate the rotational inertia, the recursive least-squares estimation with multiple forgetting was applied with the information of the swing velocity of the excavator. For realistic evaluation, an actual working scenario-based performance evaluation was conducted. Based on the estimated rotational inertia and an analysis of estimation errors, sliding mode control inputs were computed. The actual working scenario-based performance evaluation of the designed safety algorithm was conducted, and the results showed that the developed safety control algorithm can efficiently avoid a collision with an object in consideration of rotational inertia variations.

서보밸브-미터링 실린더 시스템의 오일 관성효과와 주파수 응답 특성에 관한 연구 (A Study on the Oil Inertia Effect and Frequency Response Characteristics of a Servo Valve-Metering Cylinder System)

  • 윤홍식;김성동
    • 드라이브 ㆍ 컨트롤
    • /
    • 제18권2호
    • /
    • pp.9-19
    • /
    • 2021
  • The spool displacement signal of a directional control valve, including the servo valve, can be considered as the standard signal to measure dynamic characteristics. When the spool displacement signal is not available, the velocity signal of a metering cylinder piston can be used. In this study, the frequency response characteristics of the metering cylinder are investigated for the spool displacement input. The transfer functions of the servo valve-metering system are derived taking into consideration the oil inertia effect in the transmission lines. The theoretical results of the transfer functions are verified through computer simulations and experiments. The oil inertia effect in the transmission lines was found to have a very significant effect on the bandwidth frequency of the servo valve-metering cylinder system. In order to more precisely measure the dynamic characteristics of a servo valve, the metering cylinder should be set up to minimize the oil inertia effect by increasing the inner diameters of the transmission lines or shortening their lengths.

부분 탄성지지된 유체 저장 원통셸의 자유진동 (Free Vibrations of Fluid-filled Cylindrical Shells on Partial Elastic Foundations)

  • 정강;김영완
    • 한국소음진동공학회논문집
    • /
    • 제22권8호
    • /
    • pp.763-770
    • /
    • 2012
  • The free vibration characteristics of fluid-filled cylindrical shells on partial elastic foundations are investigated by an analytical method. The cylindrical shell is fully or partially surrounded by the elastic foundations, these are represented by the Winkler or Pasternak model. The motion of shell is represented by the first order shear deformation theory to account for rotary inertia and transverse shear strains. The steady flow of fluid is described by the classical potential flow theory. The fluid-structure interaction is considered in the analysis. The effect of internal fluid can be considered by imposing a relation between the fluid pressure and the radial displacement of the structure at the interface. To validate the present method, the numerical example is presented and compared with the available existing results.