• Title/Summary/Keyword: fluid flow velocity

Search Result 1,740, Processing Time 0.029 seconds

Lie group analysis of MHD slip flow past a stretching surface: Effect of suction/injection

  • Waheed Iqbal;Mudassar Jalil;Mohamed A. Khadimallah;Hamdi Ayed;Ikram Ahmad;Rana Muhammad Akram Muntazir;Abir Mouldi;Muzamal Hussain;Javeria Umbreen;Essam Mohammed Banoqitah;Ghulam Murtaza;Bazal Fatima;Muhammad Taj;Zafer Iqbal
    • Advances in concrete construction
    • /
    • v.17 no.4
    • /
    • pp.179-185
    • /
    • 2024
  • Effects of MHD slip flow of second grade fluid with heat transfer are studied in the presence of heat source along permeable stretching surface. The governing boundary layer equations are complex and partial in nature. Using Lie group theory the suitable similarity transformation is derived. The system of PDEs is transformed to system of ODEs by applying these similarity transformations. The combined effect of Hartman number and porosity on velocity profile and the influence of slip parameter on fluid velocity is observed. It is found that enhancing the second grade parameter, boundary layer thickens and ultimately speedup the fluid. Also, the effect of suction/injection parameter on velocity profile is checked. An excellent agreement is noticed that assures the correctness of results. Effects of various physical parameters on the velocity and temperature profile are elaborated with graphs.

Natural Frequency of Rotating Cantilever Pipe Conveying Fluid with Tip Mass (끝단질량을 가진 유체유동 회전 외팔 파이프의 고유진동수 해석)

  • Yoon, Han-Ik;Son, In-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.10 s.175
    • /
    • pp.150-157
    • /
    • 2005
  • The vibration system in this study is consisted of a rotating cantilever pipe conveying fluid and a tip mass. The equation of motion is derived by using the Lagrange's equation. The influences of the rotating angular velocity and the velocity of fluid flow on the natural frequencies of a cantilever pipe have been studied by the numerical method. The effects of a tip mass on the natural frequencies of a rotating cantilever pipe are also studied. The influences of a tip mass, the velocity of fluid, the angular velocity of a cantilever pipe and the coupling of these factors on the natural frequency of a cantilever pipe are analytically clarified. The natural frequencies of a cantilever pipe conveying fluid are proportional to the angular velocity of the pipe in both axial direction and lateral direction.

Analysis of Flow Field around Multiple Fluid Spheres in the Low Knudsen Number Region (저 누드센 영역에서 다중 유체구 주위의 유동장 해석)

  • 정창훈;이규원
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.6
    • /
    • pp.733-743
    • /
    • 2003
  • The flow field in multiple fluid sphere systems was studied analytically. The expanded zero vorticity cell model based on Kuwabara's theory (1959) was applied and the effects of gas slippage at the collecting surface were considered. Also, the solid sphere system was extended to fluid sphere including the effects of the induced internal circulation inside the liquid droplet spheres or gas bubble systems. As a result, the obtained analytic solution was converged to the existing solutions for flow field around solid and bubble sphere systems with proper boundary conditions. Based on the resolved flow field, the terminal velocity around the collecting fluid spheres was obtained. Subsequently, this study evaluated the most general solution for flow field around the multiple fluid sphere systems. The obtained flow field in multiple fluid sphere could be used as a fundamental consideration of wet scrubber design and devices for removing particles by fluid-fluid interactions.

Behavior Characteristics of Swirl-Twin Spray with Changing Swirl Angle (선회각도변화에 따른 2유체 선회분무의 거동특성)

  • Kang, Wan-Bong;Cha, Keun-Jong;Kim, Duck-Jool
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.943-948
    • /
    • 2000
  • The Twin-fluid Swirl Nozzles are used in many parts of the industry to produce homogeneous spray. This study is to investigate the effects of outer air swiller and inner water swiller on atomization of liquid.. The experiment was carried out with increasing air-flow rate at constant liquid-flow rate and with changing outer air swiller angle and inner water swiller angle. A Particle Dynamics Analyzer(PDA) was used to measure drop size, mean and ms values of axial velocity, number density and Sauter mean diameter(SMD). The axial mean velocity and SMD of droplets were measured along the center line and radial directions. It was found that the higher air flow-rate resulted in the smaller Sauter mean diameter of liquid spray and the higher axial mean velocity of droplets. This experimental results will be conveniently used for the preliminary design stage of twin-fluid nozzle development.

  • PDF

Settlement of velocity dissemination with fluid parameters for the configuration of stretching cylinder

  • Jalil, Mudassar;Iqbal, Waheed;Hussain, Muzamal;Khadimallah, Mohamed A.;Alshoaibi, Adil;Baili, Jamel;Khedher, Khaled Mohamed;Ali, Elimam Abdallah;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.42 no.3
    • /
    • pp.389-396
    • /
    • 2022
  • This investigation in fluid mechanics surrounds around the variety of flow problems for different fluids along the stretching cylinder. Numerical procedure is carried out for the obtained resultant equations by Keller-Box technique. Numerical study of laminar, steady, viscous and incompressible two dimensional boundary layer flow of effects of suction and blowing on boundary layer slip flow of Casson fluid along permeable exponentially stretching cylinder has been carried out in the present draft. physical parameters i.e., Nusselt number and skin friction coefficient, suction parameter and the local Reynold number are investigated on velocity profile and elaborated through proper graphs and table.

Impact in bioconvection MHD Casson nanofluid flow across Darcy-Forchheimer Medium due to nonlinear stretching surface

  • Sharif, Humaira;Hussain, Muzamal;Khadimallah, Mohamed A.;Naeem, Muhammad Nawaz;Ayed, Hamdi;Tounsi, Abdelouahed
    • Smart Structures and Systems
    • /
    • v.28 no.6
    • /
    • pp.791-798
    • /
    • 2021
  • Current investigation aims to analyze the characteristics of magnetohydrodynamic boundary layer flow of bioconvection Casson fluid in the presence of nano-size particles over a permeable and non-linear stretchable surface. Fluid passes through the Darcy-Forchheimer permeable medium. Effect of different parameter such as Darcy-Forchheimer, porosity parameter, magnetic parameter and Brownian factor are investigated. Increasing Brownian factor leads to the rapid random movement of nanosize particles in fluid flows which shows an expansion in thermal boundary layer and enhances the nanofluid temperature more rapidly. For large values of Darcy-Forchheimer, magnetic parameter and porosity factor the velocity profile decreases. Higher values of velocity slip parameter cause decreasing trend in momentum layer with velocity profile.

A Feasibility Study on the 3-Dimensional Flow of the Jet under the Static Electromagnetic Field

  • Cho I. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.144-145
    • /
    • 2003
  • A feasibility study on the alternating jet flow under the static electromagnetic field was carried out. When a fluid with electrical conductivity lies in the static electromagnetic field and moves electric current occurs in the fluid. Due to the electromagnetic field and the electric current, lorentz force generates in the fluid, which undergo the 'breaking' effect to the fluid. In order to simulate the complex fluid flow in the magnetic field, electromagnetic and fluid flow analysis need to be solved simultaneously. In the present study, a SOLA (SOLution Algorithm) scheme was used in order to calculate electromagnetic and fluid flow field. Jet flow without an electromagnetic field was compared with analytical solution in order to validate the flow analysis scheme. Effect of jet velocity on the flow pattern down the jet was investigated.

  • PDF

A study on material removal characteristics of MR fluid jet polishing system through flow analysis (유동해석을 통한 MR fluid jet polishing 시스템의 재료제거 특성 분석)

  • Sin, Bong-Cheol;Lim, Dong-Wook;Lee, Jung-Won
    • Design & Manufacturing
    • /
    • v.13 no.3
    • /
    • pp.12-18
    • /
    • 2019
  • Fluid jet polishing is a method of jetting a fluid to polish a concave or free-form surface. However, the fluid jet method is difficult to form a stable polishing spot because of the lack of concentration. In order to solve this problem, MR fluid jet polishing system using an abrasive mixed with an MR fluid whose viscosity changes according to the intensity of a magnetic field is under study. MR fluid jet polishing is not easy to formulate for precise optimal conditions and material removal due to numerous fluid compositions and process conditions. Therefore, in this paper, quantitative data on the factors that have significant influence on the machining conditions are presented using various simulations and the correlation studies are conducted. In order to verify applicability of the fabricated MR fluid jet polishing system by nozzle diameter, the flow pattern and velocity distribution of MR fluid and polishing slurry of MR fluid jet polishing were analyzed by flow analysis and shear stress due to magnetic field changes was analyzed. The MR fluid of the MR fluid jet polishing and the flow pattern and velocity distribution of the polishing slurry were analyzed according to the nozzle diameter and the effects of nozzle diameter on the polishing effect were discussed. The analysis showed that the maximum shear stress was 0.45 mm at the diameter of 0.5 mm, 0.73 mm at 1.0 mm, and 1.24 mm at 1.5 mm. The cross-sectional shape is symmetrical and smooth W-shape is generated, which is consistent with typical fluid spray polishing result. Therefore, it was confirmed that the high-quality surface polishing process can be stably performed using the developed system.

INFLUENCE OF SLIP CONDITION ON RADIATIVE MHD FLOW OF A VISCOUS FLUID IN A PARALLEL POROUS PLATE CHANNEL IN PRESENCE OF HEAT ABSORPTION AND CHEMICAL REACTION.

  • VENKATESWARLU, M.;VENKATA LAKSHMI, D.;DARMAIAH, G.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.20 no.4
    • /
    • pp.333-354
    • /
    • 2016
  • The present investigation deals, heat and mass transfer characteristics with the effect of slip on the hydromagnetic pulsatile flow through a parallel plate channel filled with saturated porous medium. Based on the pulsatile flow nature, exact solution of the governing equations for the fluid velocity, temperature and concentration are obtained by using two term perturbation technique subject to physically appropriate boundary conditions. The expressions of skin friction, Nusselt number and Sherwood number are also derived. The numerical values of the fluid velocity, temperature and concentration are displayed graphically whereas those of shear stress, rate of heat transfer and rate of mass transfer at the plate are presented in tabular form for various values of pertinent flow parameters. By increasing the slip parameter at the cold wall the velocity increases whereas the effect is totally reversed in the case of shear stress at the cold wall.

Micro PIV Measurement of Two-Fluid Flow with Different Refraction Indices (미소입자영상유속계를 이용한 굴절률이 다른 두 유체 유동 측정)

  • Kim, Byoung-Jae;Liu, Ying Zheng;Sung, Hyung-Jin
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.107-114
    • /
    • 2003
  • The influence of property difference in refraction index on micro PIV measurement of two-fluid flow in a microchannel was analyzed. The difference of measurement planes in two fluids would bring misunderstanding of the physics. The objective-imaging system for two-fluid flow measurement was presented, and the condition for measurement of valid velocity profile across two-fluid interface was derived. A micro PIV experimental system was set up to measure two-fluid flow inside a Y-shape microchannel. Under the conditions, three cases of two-fluid flow of glycerol solutions at different concentration (${\phi}$), e.g., (${\phi}=0\;and\;{\phi}=0.2,\;{\phi}=0.1\;and\;{\phi}=0.5,\;{\phi}=0\;and\;{\phi}=0.6$, were measured. Close agreement of experimental and numerical results was found.

  • PDF