Browse > Article
http://dx.doi.org/10.12989/sss.2021.28.6.791

Impact in bioconvection MHD Casson nanofluid flow across Darcy-Forchheimer Medium due to nonlinear stretching surface  

Sharif, Humaira (Department of Mathematics, Govt. College University Faisalabad)
Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad)
Khadimallah, Mohamed A. (Prince Sattam Bin Abdulaziz University, College of Engineering, Civil Engineering Department)
Naeem, Muhammad Nawaz (Department of Mathematics, Govt. College University Faisalabad)
Ayed, Hamdi (Department of Civil Engineering, College of Engineering, King Khalid University)
Tounsi, Abdelouahed (YFL (Yonsei Frontier Lab), Yonsei University)
Publication Information
Smart Structures and Systems / v.28, no.6, 2021 , pp. 791-798 More about this Journal
Abstract
Current investigation aims to analyze the characteristics of magnetohydrodynamic boundary layer flow of bioconvection Casson fluid in the presence of nano-size particles over a permeable and non-linear stretchable surface. Fluid passes through the Darcy-Forchheimer permeable medium. Effect of different parameter such as Darcy-Forchheimer, porosity parameter, magnetic parameter and Brownian factor are investigated. Increasing Brownian factor leads to the rapid random movement of nanosize particles in fluid flows which shows an expansion in thermal boundary layer and enhances the nanofluid temperature more rapidly. For large values of Darcy-Forchheimer, magnetic parameter and porosity factor the velocity profile decreases. Higher values of velocity slip parameter cause decreasing trend in momentum layer with velocity profile.
Keywords
bio-convection; casson nanofluid; Darcy-Forchheimer flow; energy activation; nonlinear stretching surface; numerical solution; slip boundary conditions;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hayat, T., Kanwal, M., Qayyum, S. and Alsaedi, A. (2020), "Entropy generation optimization of MHD Jeffrey nanofluid past a stretchable sheet with activation energy and non-linear thermal radiation", Physica A: Statist. Mech. Applicat., 544, 123437. https://doi.org/10.1016/j.physa.2019.123437   DOI
2 Hillesdon, A.J. and Pedley, T.J. (1996), "Bioconvection in suspensions of oxytactic bacteria: linear theory", J. Fluid Mech., 324, 223-259. https://doi.org/10.1017/S0022112096007902   DOI
3 Hillesdon, A.J., Pedley, T.J. and Kessler, J.O. (1995), "The development of concentration gradients in a suspension of chemotactic bacteria", Bull. Math. Biol., 57, 299-344. https://doi.org/10.1007/BF02460620   DOI
4 Bhatti, M.M. and Michaelides, E.E. (2020), "Study of Arrhenius activation energy on the thermo-bioconvection nanofluid flow over a Riga plate", J. Thermal Anal. Calorimetry, 1-10. https://doi.org/10.1007/s10973-020-09492-3   DOI
5 Zahrai, S.M. and Kakouei, S. (2019), "Shaking table tests on a SDOF structure with cylindrical and rectangular TLDs having rotatable baffles", Smart Struct. Syst., Int. J., 24(3), 391-401. https://doi.org/10.12989/sss.2019.24.3.391   DOI
6 Ibrahim, W. and Negera, M. (2020), "MHD slip flow of upper-convected Maxwell nanofluid over a stretching sheet with chemical reaction", J. Egypt. Mathe. Soc., 28(1), 1-28. https://doi.org/10.1186/s42787-019-0057-2   DOI
7 Nayak, M.K., Prakash, J., Tripathi, D., Pandey, V.S., Shaw, S. and Makinde, O.D. (2020), "3D Bioconvective multiple slip flow of chemically reactive Casson nanofluid with gyrotactic micro-organisms", Heat Transfer-Asian Res., 49(1), 135-153. https://doi.org/10.1002/htj.21603   DOI
8 Irfan, M., Khan, W.A., Khan, M. and Gulzar, M.M. (2019), "Influence of Arrhenius activation energy in chemically reactive radiative flow of 3D Carreau nanofluid with nonlinear mixed convection", J. Phys. Chem. Solids, 125, 141-152. https://doi.org/10.1016/j.jpcs.2018.10.016   DOI
9 Khan, W.A. and Pop, I. (2010), "Boundary-layer flow of a nanofluid past a stretching sheet", Int. J. Heat Mass Transfer, 53(11-12), 2477-2483.   DOI
10 Tohidi, H., Hosseini-Hashemi, S.H. and Maghsoudpour, A. (2018), "Size-dependent forced vibration response of embedded micro cylindrical shells reinforced with agglomerated CNTs using strain gradient theory", Smart Struct. Syst., Int. J., 22(5), 527-546. https://doi.org/10.12989/sss.2018.22.5.527   DOI
11 Gbadeyan, J.A., Titiloye, E.O. and Adeosun, A.T. (2020), "Effect of variable thermal conductivity and viscosity on Casson nanofluid flow with convective heating and velocity slip", Heliyon, 6(1), e03076. https://doi.org/10.1016/j.heliyon.2019.e03076   DOI
12 Buongiorno, J. (2006), "Convective transport in nanofluids", J. Heat Transfer, 128(3), 240-250.   DOI
13 Casson, N.A. (1959), "Flow equation for pigment oil suspensions of the printing ink type", In: Rheology of Dispersed System, Peragamon Press. https://doi.org/10.1002/9781444391060
14 Choi, S.U. and Eastman, J.A. (1995), "Enhancing thermal conductivity of fluids with nanoparticles", (No. ANL/MSD/CP84938; CONF-951135-29), Argonne National Lab., IL, USA.
15 Khan, M.I., Hayat, T., Waqas, M., Alsaedi, A. and Khan, M.I. (2019a), "Effectiveness of radiative heat flux in MHD flow of Jeffrey-nanofluid subject to Brownian and thermophoresis diffusions", J. Hydrodyn., 31(2), 421-427. https://doi.org/10.1007/s42241-019-0003-7   DOI
16 Khan, W.A., Rashad, A.M., Abdou, M.M.M. and Tlili, I. (2019b), "Natural bioconvection flow of a nanofluid containing gyrotactic microorganisms about a truncated cone", Eur. J. Mech. - B/Fluids, 75, 133-142. https://doi.org/10.1016/j.euromechflu.2019.01.002   DOI
17 Bhatti, M.M., Mishra, S.R., Abbas, T. and Rashidi, M.M. (2018), "A mathematical model of MHD nanofluid flow having gyrotactic microorganisms with thermal radiation and chemical reaction effects", Neural Comput. Applicat., 30(4), 1237-1249. https://doi.org/10.1007/s00521-016-2768-8   DOI
18 Shah, Z., Dawar, A., Kumam, P., Khan, W. and Islam, S. (2019), "Impact of nonlinear thermal radiation on MHD nanofluid thin film flow over a horizontally rotating disk", Appl. Sci., 9(8), 1533. https://doi.org/10.3390/app9081533   DOI
19 Sheikholeslami, M., Abelman, S. and Ganji, D.D. (2014), "Numerical simulation of MHD nanofluid flow and heat transfer considering viscous dissipation", Int. J. Heat Mass Transfer, 79, 212-222. https://doi.org/10.1016/j.ijheatmasstransfer.2014.08.004   DOI
20 Cuong-Le, T., Nguyen, K.D., Nguyen-Trong, N., Khatir, S., Nguyen-Xuan, H. and Abdel-Wahab, M. (2021), "A three-dimensional solution for free vibration and buckling of annular plate, conical, cylinder and cylindrical shell of FG porous-cellular materials using IGA", Compos. Struct., 259, 113216. https://doi.org/10.1016/j.compstruct.2020.113216   DOI
21 Abbas, S.Z., Khan, M.I., Kadry, S., Khan, W.A., Israr-Ur-Rehman, M. and Waqas, M. (2020), "Fully developed entropy optimized second order velocity slip MHD nanofluid flow with activation energy", Comput. Methods Programs Biomed., 190, 105362. https://doi.org/10.1016/j.cmpb.2020.105362   DOI
22 Tlili, I., Ramzan, M., Kadry, S., Kim, H.W. and Nam, Y. (2020), "Radiative mhd nanofluid flow over a moving thin needle with entropy generation in a porous medium with dust particles and hall current", Entropy, 22(3), 354. https://doi.org/10.3390/e22030354   DOI
23 Daniel, Y.S., Aziz, Z.A., Ismail, Z. and Salah, F. (2017), "Effects of thermal radiation, viscous and Joule heating on electrical MHD nanofluid with double stratification", Chinese J. Phys., 55(3), 630-651. https://doi.org/10.1016/j.cjph.2017.04.001   DOI
24 Ahmed, Z., Nadeem, S., Saleem, S. and Ellahi, R. (2019), "Numerical study of unsteady flow and heat transfer CNT-based MHD nanofluid with variable viscosity over a permeable shrinking surface", Int. J. Numer. Methods Heat & Fluid Flow. https://doi.org/10.1108/HFF-04-2019-0346   DOI
25 Ramzan, M., Bilal, M., Chung, J.D. and Farooq, U. (2016), "Mixed convective flow of Maxwell nanofluid past a porous vertical stretched surface-An optimal solution", Results Phys., 6, 1072-1079. https://doi.org/10.1016/j.rinp.2016.11.036   DOI
26 Kuznetsov, A.V. (2011b), "Nanofluid bioconvection in water-based suspensions containing nanoparticles and oxytactic microorganisms: oscillatory instability", Nanoscale Res. Lett., 6, 100. https://doi.org/10.1186/1556-276X-6-100   DOI
27 Lee, S.Y., Huynh, T.C., Dang, N.L. and Kim, J.T. (2019), "Vibration characteristics of caisson breakwater for various waves, sea levels, and foundations", Smart Struct. Syst., Int. J., 24(4), 525-539. https://doi.org/10.12989/sss.2019.24.4.525   DOI
28 Mishra, A. and Kumar, M. (2020), "Velocity and thermal slip effects on MHD nanofluid flow past a stretching cylinder with viscous dissipation and Joule heating", SN Appl. Sci., 2(8), 1-13. https://doi.org/10.1007/s42452-020-3156-7   DOI
29 Souayeh, B., Reddy, M.G., Sreenivasulu, P., Poornima, T., Rahimi-Gorji, M. and Alarifi, I.M. (2019), "Comparative analysis on non-linear radiative heat transfer on MHD Casson nanofluid past a thin needle", J. Molecular Liquids, 284, 163-174. https://doi.org/10.1016/j.molliq.2019.03.151   DOI
30 Tayeb, T.S., Zidour, M., Bensattalah, T., Heireche, H., Benahmed, A. and Bedia, E.A. (2020), "Mechanical buckling of FG-CNTs reinforced composite plate with parabolic distribution using Hamilton's energy principle", Adv. Nano Res., Int. J., 8(2), 135-148. https://doi.org/10.12989/anr.2020.8.2.135   DOI
31 Al-Hossainy, A.F., Eid, M.R. and Zoromba, M.S. (2019), "SQLM for external yield stress effect on 3D MHD nanofluid flow in a porous medium", Physica Scripta, 94(10), 105208. https://doi.org/10.1088/1402-4896/ab2413   DOI
32 Gafour, Y., Hamidi, A., Benahmed, A., Zidour, M., & Bensattalah, T. (2020), "Porosity-dependent free vibration analysis of FG nanobeam using non-local shear deformation and energy principle", Adv. Nano Res., Int. J., 8(1), 37-47. https://doi.org/10.12989/anr.2020.8.1.037   DOI
33 Yeh, J.Y. (2016), "Vibration characteristic analysis of sandwich cylindrical shells with MR elastomer", Smart Struct. Syst., Int. J., 18(2), 233-247. https://doi.org/10.12989/sss.2016.18.2.233   DOI
34 Kuznetsov, A.V. (2010), "The onset of nanofluid bioconvection in a suspension containing both nanoparticles and gyrotactic microorganisms, Int. Commun. Heat Mass Transfer, 37, 1421-1425. https://doi.org/10.1016/j.icheatmasstransfer.2010.08.015   DOI
35 Jawad, M., Shah, Z., Islam, S., Bonyah, E. and Khan, A.Z. (2018), "Darcy-Forchheimer flow of MHD nanofluid thin film flow with Joule dissipation and Navier's partial slip", J. Phys. Commun., 2(11), 115014. https://doi.org/10.1088/2399-6528/aaeddf   DOI
36 Zuhra, S., Khan, N.S., Shah, Z., Islam, S. and Bonyah, E. (2018), "Simulation of bioconvection in the suspension of second grade nanofluid containing nanoparticles and gyrotactic microorganisms", AIP Adv., 8(10), 105210. https://doi.org/10.1063/1.5054679   DOI
37 Wang, C.Y. (1889), "Free convection on a vertical stretching surface", J. Appl. Math. Mech. (ZAMM), 69, 418-420. https://doi.org/10.1002/zamm.19890691115   DOI
38 Mustafa, M., Khan, J.A., Hayat, T. and Alsaedi, A. (2017), "Buoyancy effects on the MHD nanofluid flow past a vertical surface with chemical reaction and activation energy", Int. J. Heat Mass Transfer, 108, 1340-1346. https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.029   DOI
39 Eldabe, N.T.M. and Salwa, M.G.E. (1995), "Heat transfer of MHD non-Newtonian Casson fluid flow between two rotating cylinders", J. Phys., 64, 41-64.   DOI
40 Eastman, J.A., Choi, S.U.S., Li, S., Yu, W. and Thompson, L.J. (2001), "Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles", Appl. Phys. Lett., 78(6), 718-720. https://doi.org/10.1063/1.1341218   DOI
41 Ghadikolaei, S.S., Hosseinzadeh, K., Ganji, D.D. and Jafari, B. (2018), "Nonlinear thermal radiation effect on magneto Casson nanofluid flow with Joule heating effect over an inclined porous stretching sheet", Case Studies Thermal Eng., 12, 176-187. https://doi.org/10.1016/j.csite.2018.04.009   DOI
42 Hadji, L. (2020), "Influence of the distribution shape of porosity on the bending of FGM beam using a new higher order shear deformation model", Smart Struct. Syst., Int. J., 26(2), 253-262. https://doi.org/10.12989/sss.2020.26.2.253   DOI
43 Hadji, L. and Safa, A. (2020), "Bending analysis of softcore and hardcore functionally graded sandwich beams", Earthq. Struct., Int. J., 18(4), 481-492. https://doi.org/10.12989/eas.2020.18.4.481   DOI
44 Ma, Y., Mohebbi, R., Rashidi, M.M., Yang, Z. and Sheremet, M.A. (2019), "Numerical study of MHD nanofluid natural convection in a baffled U-shaped enclosure", Int. J. Heat Mass Transfer, 130, 123-134. https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.072   DOI
45 AlSaleh, R.J. and Fuggini, C. (2020), "Combining GPS and accelerometers' records to capture torsional response of cylindrical tower", Smart Struct. Syst., Int. J., 25(1), 111-122. https://doi.org/10.12989/sss.2020.25.1.111   DOI
46 Batou, B., Nebab, M., Bennai, R., Atmane, H.A., Tounsi, A. and Bouremana, M. (2019), "Wave dispersion properties in imperfect sigmoid plates using various HSDTs", Steel Compos. Struct., Int. J., 33(5), 699-716. https://doi.org/10.12989/scs.2019.33.5.699   DOI
47 Bestman, A.V. (1990), "Natural convection boundary layer with suction and mass transfer in a porous medium", Int. J. Energy Res., 14(4), 389-396. https://doi.org/10.1002/er.4440140403   DOI
48 Kuznetsov, A.V. (2011a), "Non-oscillatory and oscillatory nanofluid bio-thermal convection in a horizontal layer of finite depth", Eur. J. Mech. - B/Fluids, 30, 156-165. https://doi.org/10.1016/j.euromechflu.2010.10.007   DOI
49 Le Thanh, C., Nguyen, T.N., Vu, T.H., Khatir, S. and Wahab, M.A. (2020), "A geometrically nonlinear size-dependent hypothesis for porous functionally graded micro-plate", Eng. Comput., 1-12. https://doi.org/10.1007/s00366-020-01154-0   DOI
50 Lee, S., Choi, S.U.S., Li, S. and Eastman, J.A. (1999), "Measuring thermal conductivity of fluids containing oxide nanoparticles", J. Heat Tranfer, 121(2), 280e289. https://doi.org/10.1115/1.2825978   DOI
51 Maleque, K. (2013), "Effects of binary chemical reaction and activation energy on MHD boundary layer heat and mass transfer flow with viscous dissipation and heat generation/absorption", ISRN Thermodyn. https://doi.org/10.1155/2013/284637   DOI
52 Khan, N.S., Shah, Q., Bhaumik, A., Kumam, P., Thounthong, P. and Amiri, I. (2020), "Entropy generation in bioconvection nanofluid flow between two stretchable rotating disks", Scientific Reports, 10(1), 1-26. https://doi.org/10.1038/s41598-020-61172-2   DOI
53 Kumam, P., Shah, Z., Dawar, A., Rasheed, H.U. and Islam, S. (2019), "Entropy generation in MHD radiative flow of CNTs Casson nanofluid in rotating channels with heat source/sink", Mathe. Problems Eng. https://doi.org/10.1155/2019/9158093   DOI
54 Haq, R.U., Nadeem, S., Khan, Z.H. and Okedayo, T.G. (2014), "Convective heat transfer and MHD effects on Casson nanofluid flow over a shrinking sheet", Central Eur. J. Phys., 12(12), 862-871. https://doi.org/10.2478/s11534-014-0522-3   DOI
55 Poplawski, B., Mikulowski, G., Pisarski, D., Wiszowaty, R. and Jankowski, L. (2019), "Optimum actuator placement for damping of vibrations using the Prestress-Accumulation Release control approach", Smart Struct. Syst., Int. J., 24(1), 27-35. https://doi.org/10.12989/sss.2019.24.1.027   DOI
56 Salah, F., Boucham, B., Bourada, F., Benzair, A., Bousahla, A.A. and Tounsi, A. (2019), "Investigation of thermal buckling properties of ceramic-metal FGM sandwich plates using 2D integral plate model", Steel Compos. Struct., Int. J., 33(6), 805-822. https://doi.org/10.12989/scs.2019.33.6.805   DOI