• 제목/요약/키워드: fluid conveying pipeline

검색결과 15건 처리시간 0.025초

팔당 취수펌프장의 수격현상에 관한 수치해석적 연구 (Numerical Study on the Waterhammer of PalDang Intake Pumping Station)

  • 김경엽;유택인
    • 한국유체기계학회 논문집
    • /
    • 제3권4호
    • /
    • pp.52-58
    • /
    • 2000
  • The numerical study on the waterhammer was carried out for the intake pumping station of the metropolitan water supply 6th stage project. Because the waterhammer problems as a result of the pump power failure were the most important, these situations were carefully investigated. The surge tank and the stand pipes effectively protected the tunnels md the downstream region of pipeline from the pressure surge. In case the moment of inertia of the pump and motor was above $5080\;kg{\cdot}m^2$, the column separation did not occur in the pipeline between the pumping station and the inlet of 1st tunnel. As the moment of inertia increased, the pressure surges decreased in the pipeline conveying raw water. The pump control valve was chosen as the main surge suppression device for the intake pumping station. After power failure, the valve disc should be rapidly closed in 2.5 seconds and controlled the final closure to 15 seconds by the oil dashpot. If the slamming happened to the pump control valve, there was some danger of this system damaging. As the reverse flow through the valve increased, the upsurge extremely increased.

  • PDF

밸브에 의한 대형펌프시스템의 수격특성에 관한 연구 (A Study on Valve-Induced Water Hammer Characteristics for Large Pump System)

  • 이철재;임경선;조대환
    • 해양환경안전학회:학술대회논문집
    • /
    • 해양환경안전학회 2009년도 춘계학술발표회
    • /
    • pp.177-178
    • /
    • 2009
  • 관로내의 유속이 급격히 변하면 압력도 크게 상승하거나 강하하게 되어 유체 과도현상을 일으키게 된다. 이러한 수격현상에 대한 연구는 펌프스테이션이 커지고 유체를 이송하는 시스템이 대형화되어 그 중요성이 더욱 증가하였다. 이것은 파이프라인이 길어지고 복잡해지기 때문이다. 이 연구에서는 특성법을 이용하여 대형펌프 시스템의 밸브 개폐로 발생하는 수격현상을 평가하였다.

  • PDF

원심펌프의 시동 및 정지에 따른 수격현상 (Waterhammer Caused by Startup and Stoppage of a Centrifugal Pump)

  • 김경엽;김점배
    • 한국유체기계학회 논문집
    • /
    • 제7권1호
    • /
    • pp.51-57
    • /
    • 2004
  • The waterhammer has recently become more important because the pumping stations were big and the systems conveying the fluid through the large and long transmission pipelines were complex. When the pumps are started or stopped for the operation or tripped due to the power failure, the hydraulic transients occur as a result of the sudden change in velocity As the pressure waves are propagating between the pumping station and the distributing reservoir, the pressure inside the pipe drops to the liquid vapor pressure with the pipeline profile, at which time a vapor cavity forms, and finally the column separation occurs. If the pressure in the pipe is less than the atmospheric pressure, the pipe can be collapsed and destroyed after the water columns separated by the vapor cavity rejoin. During the reverse flow, the pressure is so abnormally increased at the pumping station that the accident of flooding may happen due to the failure of system. In this paper, the field tests on the waterhammer by the startup, stoppage, and power failure of a centrifugal pump were carried out for Yongma transmission pumping station in Seoul. The experimental results were compared with that of the numerical calculations, in which results the procedure of controlled pump normal shut-down and the two-step closing mode of controlling the ball valve for pump emergency stop are proposed to reduce the pressure surge.

유체가 흐르는 가스파이프의 진동 특성 (Vibrational Characteristics of the Gas Pipelines Conveying Flow)

  • 김경태;이성수;이성우
    • 한국생산제조학회지
    • /
    • 제21권2호
    • /
    • pp.337-343
    • /
    • 2012
  • This work investigates the vibrational characteristics of the underground gas pipelines. Experiments were conducted to analyze the effects of various parameters on the vibrational characteristics from the emergency detection point of view. Influences of the various types of impact exerted on the pipe, height of free fall and measuring locations were analyzed. Especially, the difference between the vibrational signal generated by the direct impact on the pipe and the ambient noise was successfully identified. To validate the experimental observation, computer simulation was also performed with constant properties(elasticity, fluid velocity and internal pressure) which are directly conjectured from the accompanying experiment with a real pipe system.

Seismic response of smart nanocomposite cylindrical shell conveying fluid flow using HDQ-Newmark methods

  • Zamani, Abbas;Kolahchi, Reza;Bidgoli, Mahmood Rabani
    • Computers and Concrete
    • /
    • 제20권6호
    • /
    • pp.671-682
    • /
    • 2017
  • In this research, seismic response of pipes is examined by applying nanotechnology and piezoelectric materials. For this purpose, a pipe is considered which is reinforced by carbon nanotubes (CNTs) and covered with a piezoelectric layer. The structure is subjected to the dynamic loads caused by earthquake and the governing equations of the system are derived using mathematical model via cylindrical shell element and Mindlin theory. Navier-Stokes equation is employed to calculate the force due to the fluid in the pipe. Mori-Tanaka approach is used to estimate the equivalent material properties of the nanocomposite and to consider the effect of the CNTs agglomeration on the scismic response of the structure. Moreover, the dynamic displacement of the structure is extracted using harmonic differential quadrature method (HDQM) and Newmark method. The main goal of this research is the analysis of the seismic response using piezoelectric layer and nanotechnology. The results indicate that reinforcing the pipeline by CNTs leads to a reduction in the displacement of the structure during an earthquake. Also the negative voltage applied to the piezoelectric layer reduces the dynamic displacement.