• Title/Summary/Keyword: fluid analysis simulation

Search Result 1,252, Processing Time 0.033 seconds

Infiltration behaviour of the slurry into tunnel face during slurry shield tunnelling in sandy soil (사질성 지반에서 이수식 쉴드 TBM 적용시 굴진면으로의 이수 침투특성에 대한 해석적 고찰)

  • Roh, Byoung-Kuk;Koh, Sung-Yil;Choo, Seok-Yeon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.3
    • /
    • pp.261-275
    • /
    • 2012
  • This paper presents numerical analysis of the mud cake infiltration behaviour which is influenced tunnel face stability during excavation by slurry shield TBM. This analysis method can make useful data to select proper shield TBM type and to set up the construction plan. But effective analysis did not proposed until now. In this paper, we carried out numerical analysis using by $PFC^{2D}$ fluid coupling simulation which is suitable for sandy soil modelling. As a analysis result, we checked that the slurry infiltration behaviour varied with soil permeability and slurry characteristic(specific weight, viscosity etc). This analysis method is helpful safety excavation through anticipating the proper slurry viscosity at the design stage and verifying the slurry quality at initial excavation stage.

A Proposal of Analysis Modeling on the Transfer and Adhesion of Incoming Salt to RC Structure (비래염분 전송 및 RC조 구조물 부착과정에 관한 분석 모델링 제안)

  • Cho, Gyu-Hwan;Kim, Woo-Jae;Ahn, Jae-Cheol;Park, Dong-Cheon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.91-92
    • /
    • 2012
  • RC structure which is located at shoreline has more serious damages compared with inland structure, because it is directly exposed to chlorine ion which is called incoming salt. In the transmission of incoming salt, differences in transmitted volume of incoming salts could occur according to the influences of local shoreline topography which includes surrounding weather conditions, types of building placements, obstacles of wind tunnel etc. And therefore, for the application of boundary conditions for durable offshore structure design against the salt attack, comparative analysis through wind tunnel test and fluid value simulation are executed in order to investigate the moving and adhesion process of incoming salt to offshore structure.

  • PDF

Free Surface Tracking for the Accurate Time Response Analysis of Nonlinear Liquid Sloshing

  • Cho Jin-Rae;Lee Hong-Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.7
    • /
    • pp.1517-1525
    • /
    • 2005
  • Liquid sloshing displays the highly nonlinear free surface fluctuation when either the external excitation is of large amplitude or its frequency approaches natural sloshing frequencies. Naturally, the accurate tracking of time-varying free surface configuration becomes a key task for the reliable prediction of the sloshing time-history response. However, the numerical instability and dissipation may occur in the nonlinear sloshing analysis, particularly in the long-time beating simulation, when two simulation parameters, the relative time-increment parameter a and the fluid mesh pattern, are not elaborately chosen. This paper intends to examine the effects of these two parameters on the potential-based nonlinear finite element method introduced for the large amplitude sloshing flow.

FLUID-STRUCTURE INTERACTION ANALYSIS FOR VORTEX-INDUCED VIBRATION OF CIRCULAR CYLINDER (유체-구조 연성해석을 통한 원주의 와유기 진동 해석)

  • Kim, S.H.;Ahn, H.T.;Ryue, J.S.;Shin, H.K.;Kwon, O.J.;Seo, H.S.
    • Journal of computational fluids engineering
    • /
    • v.17 no.1
    • /
    • pp.29-35
    • /
    • 2012
  • Fluid-Structure Interaction analysis of a circular cylinder surrounded by incompressible turbulent flow is presented. The fluid flow is modeled by incompressible Navier-Stokes equations in conjunction with large-eddy simulation for turbulent vortical flows. The circular cylinder is modeled as elastic continuum described by elasto-dynamic equation of motion. Finite element method based approach is utilized for unified formulation of fluid-structure interaction analysis. The magnitude and frequency of structural response is analysed in comparison to the driving fluid forces.

Analysis of Cooling Effect Using Compressed Cold Air in Turing Process (압축냉각공기를 이용한 선삭가공시 냉각효과 해석)

  • Kwak, Seung-Yong;Kim, Dong-Kil;Lee, Jong-Hang;Lee, Sang-Jo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.6
    • /
    • pp.1007-1013
    • /
    • 2003
  • As environmental restriction kas continuously become more strict, machining technology has emphasized on development of environment-friendly technology. In cutting technology, it has been well recognized that cutting fluids might have undesirable effects on workers health and working environment. In this study, compressed cold air was used as a replacement for conventional cutting fluids. The cooling effect on cutting tool was analyzed using the finite element method and the computational fluid dynamics. This study focused on the temperature simulation of cutting tool by real flow analysis of cold air. The maximum flow rate and the minimum temperature of compressed cold air are 300ι/min and -30$^{\circ}C$ respectively. To compare the simulation and experimental results, inner temperature of the cutting tool was measured with the thermocouple embedded in the insert. The results show that the analysis of cutting temperature using FEM and CFD is resonable, and the replacement of cutting fluid with cold air is available.

Development of Particle Simulation Method for Analysis of Fluid-Structure Interaction Problems (유체-구조 상호연성 해석을 위한 입자법 시뮬레이션 기술 개발)

  • Hwang, Sung-Chul;Park, Jong-Chun;Song, Chang-Yong;Kim, Young-Hun
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.53-58
    • /
    • 2013
  • Recently, some fluid-structure interaction (FSI) problems involving the fluid impact loads interacting with structures, such as sloshing, slamming, green-water, etc., have been considered, especially in the ocean engineering field. The governing equations for both an elastic solid model and flow model were originally derived from similar continuum mechanics principles. In this study, an elastic model based on a particle method, the MPS method, was developed for simulating the FSI problems. The developed model was first applied to a simple cantilever deflection problem for verification. Then, the model was coupled with the fluid flow model, the PNU (Pusan National University modified)-MPS method, and applied to the numerical investigation of the coupling effects between a cantilever and a mass of water, which has variable density, free-falling to the end of the cantilever.

Numerical Study for Experiment on Wave Pattern of Internal Wave and Surface Wave in Stratified Fluid (성층화된 유체 내에서 내부파와 표면파의 파형 변화 실험을 위한 수치적 연구)

  • Lee, Ju-Han;Kim, Kwan-Woo;Paik, Kwang-Jun;Koo, Won-Cheol;Kim, Yeong-Gyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.3
    • /
    • pp.236-244
    • /
    • 2019
  • Internal waves occur at the interface between two layers caused by a seawater density difference. The internal waves generated by a body moving in a two-layer fluid are also related to the generation of surface waves because of their interaction. In these complex flow phenomena, the experimental measurements and experimental set-up for the wave patterns of the internal waves and surface waves are very difficult to perform in a laboratory. Therefore, studies have mainly been carried out using numerical analysis. However, model tests are needed to evaluate the accuracy of numerical models. In this study, the various experimental conditions were evaluated using CFD simulations before experiments to measure the wave patterns of the internal waves and surface waves in a stratified two-layer fluid. The numerical simulation conditions included variations in the densities of the fluids, depth of the two-layer fluid, and moving speed of the underwater body.

Analysis of Wind Environments for Siting a Wind Farm (풍력발전 단지조성을 위한 바람환경 분석)

  • 김현구;최재우;손정봉;정우식;이화운
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.6
    • /
    • pp.745-756
    • /
    • 2003
  • An analysis of wind environments using computational fluid dynamics and an evaluation of wind resources using measurement data obtained from meteorological observation sites at Homi-Cape, Pohang have been carrid out for siting a wind farm. It was shown that a numerical simulation using computational fluid dynamics would provide reliable wind resource map in complex terrain with land-sea breeze condition. As a result of this investigation, Homi-Cape wind farm with 11.25 ㎿ capacity has been designed for maximum power generation and 25.7 GWh electricity production is predicted.

Steady/unsteady Flow Analysis for Industrial Mixer (산업용 교반기 내부 정상/비정상 유동특성해석)

  • Chang, J.;Hur, N.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.460-465
    • /
    • 2001
  • In the present study, steady and unsteady flow characteristics inside an industrial mixer with flat turbine type impeller are studied. For the flow analysis, STAR-CD is used with an automatic mesh generator developed in the present study. flow results are compared to the an available experimental data to show validity or the present simulation.

  • PDF

Numerical investigation of turbulent lid-driven flow using weakly compressible smoothed particle hydrodynamics CFD code with standard and dynamic LES models

  • Tae Soo Choi;Eung Soo Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3367-3382
    • /
    • 2023
  • Smoothed Particle Hydrodynamics (SPH) is a Lagrangian computational fluid dynamics method that has been widely used in the analysis of physical phenomena characterized by large deformation or multi-phase flow analysis, including free surface. Despite the recent implementation of eddy-viscosity models in SPH methodology, sophisticated turbulent analysis using Lagrangian methodology has been limited due to the lack of computational performance and numerical consistency. In this study, we implement the standard and dynamic Smagorinsky model and dynamic Vreman model as sub-particle scale models based on a weakly compressible SPH solver. The large eddy simulation method is numerically identical to the spatial discretization method of smoothed particle dynamics, enabling the intuitive implementation of the turbulence model. Furthermore, there is no additional filtering process required for physical variables since the sub-grid scale filtering is inherently processed in the kernel interpolation. We simulate lid-driven flow under transition and turbulent conditions as a benchmark. The simulation results show that the dynamic Vreman model produces consistent results with experimental and numerical research regarding Reynolds averaged physical quantities and flow structure. Spectral analysis also confirms that it is possible to analyze turbulent eddies with a smaller length scale using the dynamic Vreman model with the same particle size.