• Title/Summary/Keyword: flowing concrete

Search Result 224, Processing Time 0.023 seconds

An Effect on the Properties of High Flowing Concrete by Materials Variations-Focused on Inchon LNG Receiving Terminal #213,214 Tanks- (사용재료의 품질변동이 고유동콘크리트의 특성에 미치는 영향-인천 LNG 인수기지 #213,214-TK를 중심으로-)

  • 권영호;김무한
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.2
    • /
    • pp.99-107
    • /
    • 2000
  • This research investigates experimentally an effect on the properties of the high flowing concrete to be poured in the under-ground slurry wall of Inchon LNG receiving terminal(#213,214-TK) according to variations of concrete materials. Variables for sensitivity test were selected items as followings. 1) Concrete temperature (3cases), 2) Unit water (5cases), 3) Fineness modulus of fine aggregate (5cases), 4) Particle size of lime stone powder (3cases), 5) Replacement ratio of blast-furnace slag (4cases) and 6) Addition ratio of high range water reducing agent (5cases). And fresh conditions of the super flowing concrete should be satisfied with required range including slump flow(65$\pm$5cm), 50cm reaching time of flow(4~10sec), V-lot flowing time(10~ 20sec), U-box height(min. 300mm) and air content(4$\pm$1%). As results for sensitivity test, considered flow-ability, self-compaction and segregation resistance of the high flowing concrete, material variations and conditions of fresh concrete should be satisfied with the range as follwings. 1) Concrete temperature are 10~2$0^{\circ}C$(below 3$0^{\circ}C$), 2) Surface moisture of fine aggregate is within $\pm$ 0.6%, 3) Fineness modulus of fine aggregate is 2.6$\pm$0.2, 4)Replacement ratio of blast-furnace slag is 45~50% and 5) Addition ratio of high range water reducing agent is within 1%. Based on the specification for quality control, we successfully finished concrete pouring on the under-ground slurry wall having 75,000㎥(#213,214-TK) and accumulated real date in site.

Flowability Evaluation of Binary and Ternary Blended of Ultra Flowing Self-Compacting Concrete (2성분계 및 3성분계 초유동 자기충전 콘크리트의 유동성 평가)

  • Choi, Yun-Wang;Jeon, Jun-Yong;Kim, Chung-Un;Jung, Jea-Guane;Jung, Woo-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.485-488
    • /
    • 2006
  • This research has evaluated flowability of ultra flowing self-compacting concrete, which is limitedly used for traditional building structures, in accordance with the first class regulations of Japan Society of Civil Engineering(JSCE) that can be applied to overcrowding-arrangement of bar, as a part of application methods that ultra flowing self-compacting concrete is applied to both precast and prestress bridge structures. The experimental results show that the flowability is acceptable in ternary blended among binary and ternary blended mixings, which satifies the first class regulation of JSCE. It is also concluded to use fly ash to increase viscosity of concrete in the case of segregation resistance because of low viscosity in the mixture of slag from blast furnace and limestone micropowder. Satisfying goals of every mixing after U-box self-compacting experiment, we conclude that ultra flowing self-compacting concrete is applicable to bridges and civil constructions of overcrowding arrangement of bar with evaluation of flowability of ultra flowing self-compacting concrete.

  • PDF

A Study on the Resistance to Sea Water and High Flowing Properties of Concrete Using Blended Low Heat Cement (혼합형 저발열 시멘트를 사용한 콘크리트의 초유동성 및 내해수성에 관한 연구)

  • 송용순;노재호;강석화
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.281-289
    • /
    • 1998
  • This study has been performed to test the flowability and filling ability of high flowing concrete as well as distribution of aggregate and pore of core specimen, heat of hydration, compressive strength and core strength of concrete. In addition, the resistance to chloride ion penetration and chemical solutionof concrete was tested in order to evaluate the resistance to sea water of concrete and its application of high flowing concrete using blended low heat cement in the field of Seohae Grand Bridge. The properties of high flowing concrete with blended low heat cement were compared with ordinary 25-240-15 concrete using Type V cement. As the results of this study, the flowability and filling ability of high flowing concrete with blended low heat cement is satisfied without vibration. Though the cement content of high flowing concrete with blended low heat cement was 400kg/m$^2$, the rising temperature of it was relatively lower than that of the ordinary 25-240-15 concrete with Type V cement. Also, the compressive of high flowing concrete with blended low heat cement is similar to that of the ordinary 25-240-15 concrete with Type V cement.

Mock-up Tests of Concrete Filled Steel Tubular Columns (콘크리트 충전 강관 기둥의 시공에 관한 연구)

  • Lee, Deok-Chan;Choi, Jin-Man;Lee, Do-Heon;Kim, Hoon;Kim, Jin-Cheol;Park, Yon-Dong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.382-387
    • /
    • 1996
  • Three concrete filled steel tubular columns with six inner diaphrams are constructed and tested under field conditions. The size and shape of three columns are exactly same. The cross section is $40\times40cm$, and the height is 9m. Each column is constructed with normal concrete, CFST concrete, and high flowing concrete, respectively. Concrete is pumped into bottom parts of steel tubular columns from a concrete pump on the ground. Test data indicate that the slump flow of the concrete place in the top of the column is lower than that of the concrete before pumping by about 10~20cm. Slump flow loss of high flowing concrete caused by pumping is high compared to the other concretes. Concrete pump pressure of high flowing concrete is somewhat higher than that of CFST concrete.

  • PDF

Properties of the Combined High Flowing Concrete by Mix Design Factors (병용계 고유동 콘크리트의 배합요인에 따른 특성)

  • Kwon Yeong Ho;Lee Hyun Ho;Lee Hwa Jin;Ha Jae Dam
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.407-410
    • /
    • 2005
  • This research investigates experimentally an effect on the properties of the combined high flowing concrete by mix design factors. The purpose of this study is to determine the optimum mix proportion of the combined high flowing concrete having good flowability, viscosity, no-segregation and design strength(40.0MPa). For this purpose, trial mixings used belite cement+lime stone powder(LSP) are tested by mix design factors including water-cement ratio($47.9\~54.0\%$), fine aggregate volume ratio($41\~45\%$) and coarse aggregate volume ratio($41\~45\%$). As test results of this study, the optimum mix proportion for the combined high flowing concrete is as followings. Water-cement ratio $51.0\%$, fine aggregate volume ratio $43{\pm}1\%$ and coarse aggregate volume ratio $0.30{\pm}0.05m^3/m^3$ and replacement ratio of LSP $42.7\%$.

  • PDF

시공성 향상을 위한 고유동 콘크리트 배합모델 개발에 관한 실험적 연구

  • 손유신;윤영수;송영철;우상균
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.66-71
    • /
    • 2000
  • Recently, great efforts and investment have been made in order to achieve economical production by applying new methods like minimization of man-power into construction field. Therefore in this study, we have been focused on the development and practical using of high of high flowing concrete with fly ash, superplasticizer and viscocity agent, also we find out the optimum mix proportions to accomplish good wuality high flowing concrete. The results of this study show that high flowing concrete with the ratio of fly ash replacement of 20%, viscosity agent of 300g/㎥ and superplsticizer 2.0%(C$\times$%) in W/B of 35, 45% has better performance than the high flowing concrete without fly ash replacement

  • PDF

The Study on the Mix Design of the Super Flowing Concrete (초유동 콘크리트의 배합설계에 관한 연구)

  • 권영호;이상수;안재현;박칠림
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.283-289
    • /
    • 1996
  • In this paper, the mix design of the super flowing concrete is described with respcet to basic concept, confined water ratio($\beta_p$), volume ratio of water-binder(w/b), volume ratio of fine aggregates($S_r$) and coarse aggregates($G_v$). The primary purposes of this study are to evaluate the effects of cementitious materials(fly ash, slag cement, portland cement), mixing factors ($\beta_p$, w/b, $S_r$, $G_v$)., and to propose the mix design method of the super flowing concrete. As results of this study, confined water ratio($\beta_p$) of cementitious materials is very high (0.99~1.1), and then the ranges of the optimum mixing factors to be satisfied with the super flowing concrete are $S_r$ 47$\ell$ 2%, $G_v$ 52$\ell$ 1%.

  • PDF

A Study on the High-Flowing Concrete with Low Unit Weight of Cement

  • Si Woo Lee;Hong Shik Choi;Sang Chel Kim;Gweon Heo
    • The Korean Journal of Ceramics
    • /
    • v.6 no.3
    • /
    • pp.318-321
    • /
    • 2000
  • Most compressive strengths commonly used in the construction field are in a range of 240 to 300 kgf/$\textrm{cm}^2$ at 28 days. To get this rage of strengths, however, high-flowing concrete requires cementitious binders more than 400 to 450 kg/$\textrm{cm}^2$ for preventing segregation and sedimentation of aggregates. This amount of cementitious binder generates a large emission of excessive hydration heat, which may consequently induce harmful cracks in concrete structure. In order to reduce excessive hydration heat, thus, this paper aims at fabricating a high-flowing concrete under the condition that cement content is kept as low as 350kg/$\textrm{cm}^3$ by using viscose agents. In a parametric study, effects of cement types such as a ternary blended cement and Type V on he physical characteristics of high-flowing concrete were evaluated. In addition, the influence of viscosity was also investigated by applying two different viscose agents, one in a range of 6,000 to 10,000 cps and the others of 10,000 to 14,000 cps. In terms of chemical admixtures used in concrete mixture, the superplasticizer was Sulfonated Melamine-Formaldehyde Condensate with about 30,000 of molecular weight, and main component of viscose agent was HPMC (Hydroxy Propyl Methyl Cellulose). Slump flow was fixed at 50cm with different dosages of superplasticizer in weight.

  • PDF

The Execution and Estimation of Construction Cost of High Fluidity Concrete Applying Flowing Concrete Method (유동화공법에 의해 제조한 고유동 콘크리트의 시공 및 원가분석)

  • Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.2
    • /
    • pp.129-136
    • /
    • 2004
  • High fluidity concrete(HFC) requires high dosage of superplasticizer to acquire sufficient fluidity, and high contents of fine powder and viscosity enhancing admixtures to resist segregation. The use of high amount of admixtures to make HFC at batcher plant in ready mixed concrete company is one of the reasons to raise the manufacturing cost of HFC. For this reason, new type of manufacturing method of HFC are described using both flowing concrete method and segregation reducing superplasticizer(SRS) in order to gain economical profit and offer the convenience for quality control.. As dosage of melamine based superplasticizer increases, it shows that fluidity and bleeding increase, while air contents and ratio of segregation resistance decrease. It also shows that addition of viscosity agent into superplasticizer reduce bleeding and improve segregation resistance of concrete. Dosage of AE agent into superplasticizer containing viscosity agent recovers loss of air contents during flowing procedure. Combination of proper contents of superplasticizer, viscosity agent and AE agent make possible to develope segregation reducing type superplasticizer. Compressive strength of high fluidity concrete applying flowing method with it is higher than that of base concrete. No differences of compressive strength between compacting methods are found. For the estimation of construction cost of high fluidity concreting using segregation reducing type superplasicizer, under same strength levels, although material cost of high fluidity concrete is somewhat higher than that of plain concrete due to segregation reducing type superplasticizer cost, labor cost and equipment cost of high fluidity concrete is cheaper than that of plain concrete. However, based on the strength differences, high fluidity concrete shows lower material cost, labor cost and equipment cost than that of plain concrete due to decreasing in size of member and re-bar caused by high strength development of concrete.

An Experimental Study on the Properties of High Flowing Concrete according to Water/Binder Ratio(W/B) (물결합재비에 따른 고유동콘크리트의 특성에 관한 실험적 연구)

  • 김무한;최세진
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.4
    • /
    • pp.329-335
    • /
    • 2001
  • Recently, in many laboratories and institutes it is being studied on the high flowing concrete widely, which has high fluidity, non-segregation ability and fillingability, and sometimes being applied to the construction field actually. And the fluidity properties of high flowing concrete are influenced according to the several factors ; binder content, water/binder ratio and water content etc. This is an experimental study to compare and analyze the effect of water/binder ratio and water content on the properties of high flowing concrete. For this purpose, the mix proportion of high flowing concrete according to water/binder ratio(W/B : 0.30, 0.35, 0.40, 0.45) and water content (W : 155, 165, 175, 185 kg/㎥) was selected. And then slump-flow, V-lot, L-passing test in fresh concrete, and compressive strength, freezing and thawing test in hardened concrete were peformed. According to test results, it was found that the viscosity of all those high flowing concrete with the water content 175 kg/㎥ was satisfied with 50 cm pass time of slump flow prescribed by Japanese Architectural Standard Specification (JASS 5) - from 3 to 8 seconds. And non-segregation ability of concrete with W/B 0.35 was better than the other mix proportions. Especially, the compressive strength after curing 24 hours(1 day) of all high flowing concrete was higher than that prescribed by JASS 5(50 kgf/㎠).