• Title/Summary/Keyword: flower bud formation

Search Result 57, Processing Time 0.037 seconds

Characteristics of lateral bud development, necrosis and genesis of flower primordium in 'Kyoho' grapevines

  • Park, Jun Young;Jung, Myung Hee;Kim, Bo Min;Park, Yo Sup;Kim, Jun Hyeok;Park, Hee-Seung
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.987-993
    • /
    • 2020
  • This study investigated the effective harvest of 'Kyoho' grapevines by examining their characteristics including bud development, necrosis types and flower primordium formation. The size of the axillary bud did not show any difference in the 5th node or more, but it was smaller because it was closer to the base in the 4th node or less. In the 1st node, the rates of main bud necrosis (MBN), accessory bud necrosis (ABN), and whole bud necrosis (WBN) were high, and the rate of flower primordium formation was low, but there was no significant difference in the other nodes. Therefore, it was expected that using other nodes than the 1st node would be advantageous to secure production. Because the growth progresses after sprouting, the main bud necrosis rate increases, showing a very low flower primordium formation rate in March of the following year. Therefore, a method is needed to increase the storage nutrients in the winter and the rate of flower primordium formation after March. This study found that the thickness of the shoots should be less than 8.5 mm between the 3rd and 4th nodes, and the length should be less than 60 cm for nodes up to the 10th node.

Microspore-derived Embryo Formation and Morphological Changes during the Isolated Microspore Culture of Radish (Raphanus sativus L.)

  • Han, NaRae;Kim, Sung Un;Park, Han Young;Na, Haeyoung
    • Horticultural Science & Technology
    • /
    • v.32 no.3
    • /
    • pp.382-389
    • /
    • 2014
  • Raphanus sativus L. cv. Taebaek, a efficiently microspore-derived embryo (MDE)-forming cultivar, and 'Chungwoon', a non-MDE-forming cultivar were selected as donor plants for isolated microspore culture. Radish flower bud of 2.0 (small, S), 4.0 (medium, M), and 6.0 (large, L) ${\pm}$ 0.5 mm in length were isolated to determine the temporal relationship between flower bud size and MED yield. Anatomical observations revealed no difference in the structure of the flower buds between the two cultivars. In both cultivars, the stigmas were much longer than the floral leaf in M-sized flower buds. The MDE yields for 'Taebaek' per petri dish were 6.6 and 1.3 for M- and L-sized of flower buds, respectively, but MDE formation was not induced in the S flower buds. On the other hand, 'Chungwoon' failed to form MDEs in all flower buds. The microspore density of 'Taebaek' was 1.3 times more than that of 'Chungwoon' for M sized flower buds. Of the M-sized buds from 'Taebaek' and 'Chungwoon', 92.1 and 81.6%, respectively, were in the late uninucleate microspore stage, which is characterized by the highest frequency of MDE formation. Anatomical observations of MDE formation revealed that the microspores were able to divide to form a primordium from which cell division took place continuously in the 'Teabeak' cultivar. However, the microspores of 'Chungwoon' failed to progress beyond the primodium stage, resulting in lack of MDE formation. By contrast, after the formation of the primordium, various developmental stages of embyos from microspore were observed in the 'Taebaek' cultivar. These results can be used to determine MDE forming potentials of radish cultivars.

Characteristics of Flower Organ, Inflorescence and Flowering in Panax ginseng and Panax quinquefolium (인삼의 화기생장과 화서형질 및 개화특성)

  • 안상득;최광태
    • Journal of Ginseng Research
    • /
    • v.8 no.1
    • /
    • pp.45-56
    • /
    • 1984
  • This study was carried out to obtain the basic information on the development of flower bud and to clarify the characteristics of flower organ and flowering in Korean ginseng (Panax ginseng) and American ginseng (Panax quinquefolium). The formation of flower bud in the dormancy bud of Korean ginseng was initiated about the middle of June and completed late in September. The ovary, style and anther of Panax ginseng, violet-stem and yellow-berry variants, were formed earlier than those of Panax quinquefolium. Panax ginseng, therefore, flowered earlier by one month in comparison with Panax quinquefolium. As for the effect of temperature on the flowering of ginseng, both species, Panax ginseng and Panax quinquefolium, grown at 20 $^{\circ}C$ flowered earlier than those at 15 $^{\circ}C$ and field conditions, but did not flower at 30 $^{\circ}C$. Seed characters were better in Panax ginseng than in Panax quinquefolium and the amount of seeds showed the highly significant positive correlation coefficient with peduncle length in both Panax ginseng and Panax quinquefolium.

  • PDF

Effects of Temperature and Ethylene Response Inhibitors on Growth and Flowering of Passion Fruit

  • Liu, Fang-Yin;Peng, Yung-Liang;Chang, Yu-Sen
    • Horticultural Science & Technology
    • /
    • v.33 no.3
    • /
    • pp.356-363
    • /
    • 2015
  • This study examined the effects of different day/night temperature regimes or silver ion on growth and flowering of passion fruit 'Tai-nung No.1'. Low temperature treatment ($20/15^{\circ}C$) caused passion fruit cultivar 'Tai-nung No.1' to fail to flower. Flowering induction occurred within a temperature range of $20-30^{\circ}C$, with no significant difference in the days to first flower bud and the total number of flower buds between plants grown at $30/25^{\circ}C$ and $25/20^{\circ}C$. However, plants grown at $30/25^{\circ}C$ exhibited their first flower buds set on the higher nodes and had higher abortion rates of flower buds than those at $25/20^{\circ}C$. Plants grown at $30/25^{\circ}C$ had the most rapid growth and the shortest plastochron. We also evaluated the effect of the ethylene response inhibitors silver nitrate ($AgNO_3$) and silver thiosulfate (STS) on growth and flowering of potted passion fruit 'Tai-nung No.1', when they were exposed to low temperature conditions ($20/15^{\circ}C$) following chemical treatments ($AgNO_3$ or STS, at 0.5 or 1.0 mM). $AgNO_3$ and STS treatments induced flower formation and initial flower bud formation within approximately two weeks at $20/15^{\circ}C$ whereas non-treated control plants exhibited no flower formation. ACC content and activity of ACC oxidase in the leaves of passion fruit 'Tai-nung No.1'exposed to low temperature conditions ($20/15^{\circ}C$) were significantly inhibited by the ethylene inhibitor treatments. These results indicate that ethylene, which is produced under low temperature conditions, plays an important role in inhibiting flower formation in passion fruit.

Effect of Plant growth regulators on flowering in Camellia species. (식물생장조절제 처리가 동백의 화성에 미치는 영향)

  • SeonHaLee
    • Korean Journal of Plant Resources
    • /
    • v.1 no.1
    • /
    • pp.48-52
    • /
    • 1988
  • In order to examine the effect of growth regulators on flower bud formation and anthesis, various growth regulators were applied during the initiation and growthstages of flower bud development in Camellia. The inhibitor CCC increased flowerbud formation. But gibberellin had a strong suppressing effect of flower budformation while it stimulated elongatien of shoots. On the other hand, gibberellinpromoted the growth of flower buds and hastened anthesis, while other growthregulators had no effect.

  • PDF

Histological and Morphological Characteristics of New and Latent Bud Formation in Panax ginseng C.A. Meyer (인삼의 신아 및 잠아발생의 조직 형태적 특성)

  • 정찬문;정열영
    • Journal of Ginseng Research
    • /
    • v.19 no.3
    • /
    • pp.281-286
    • /
    • 1995
  • This experiment was conducted to obtain the basic information on new- and latent-bud formation, and stem vestige arrangement on the rhizome of Panax ginseng C.A. Meyer. Latent buds emerged from meristematic region between shoot and root of the embryo, and new buds for the next year were distributed both at the bottom portion of the stem and the rhizome. In the new buds, organs such as leaf, stem, and flower bud were already completely differentiated, while the latent bud had an undifferentiated meristematic tissue arranged linearly in a vertical line, indicating that each year new- and latent-buds are formed successively. This result suggests that the number of stem vestige may be used for the determination of ginseng age. Key words Rhizome, new-bud, latent-bud, histology, morphology, stem vestige, vestige arrangement.

  • PDF

Differences in Regrowth and Terminal Flower Bud Formation of 'Fuji' and 'Jonagold' Apple Trees in Response to Summer Heading Back Pruning of Current Season's Shoots (신초의 하계 절단전정에 의한 사과품종 '후지' 및 '조나골드'의 2차생장과 정화아 형성의 차이)

  • Oh, Sung Do;Lee, Hee Jae
    • Horticultural Science & Technology
    • /
    • v.17 no.3
    • /
    • pp.333-336
    • /
    • 1999
  • Current season's shoots on 2-year-old branches of 'Fuji' and 'Jonagold' apple trees were heading back pruned to 5 leaves from early May to mid July at about 12-day intervals. The summer heading back pruning induced regrowth on the pruned shoots with different responses between the two cultivars. Generally, greater regrowth occurred on the pruned shoots of 'Fuji' trees than on those of 'Jonagold', irrespective of the time of the heading cut. The shoots of 'Fuji' trees pruned in late May or in June exhibited greater regrowth compared with those pruned in early May or in July, whereas the summer heading back pruning in June resulted in the greatest regrowth for 'Jonagold'. The heading cut induced terminal flower bud formation on the pruned shoots, the percentage of which was higher in 'Fuji' than in 'Jonagold'. The highest percentages of terminal flower bud formation for 'Fuji' and 'Jonagold' were obtained with the heading cut in late May and in mid June, respectively. Percent flowering of the buds was similar in both cultivars, but percent fruit set was slightly higher in 'Fuji' than in 'Jonagold'. The time of the heading cut did not affect percent fruit set in both cultivars. Our results demonstrate that summer heading back pruning of current season's shoots induces regrowth and terminal flower bud formation therefrom when done at appropriate time, but the specific responses to the heading cut are cultivardependent.

  • PDF

Flower Bud Induction and Flower Regeneration from Ovary Cultures of Allium fistulosum L. (파(Allium fistulosum L.)의 자방배양으로 부터 화아발생 및 꽃의 분화)

  • 김재훈;최용의;소웅영
    • Korean Journal of Plant Tissue Culture
    • /
    • v.25 no.4
    • /
    • pp.263-266
    • /
    • 1998
  • Flowergenic callus was induced from the ovary surface of Allium fistulosum L. cultured on MS medium containing 0.5mg/L NAA and 0.5mg/L BA or 0.5mg/L kinetin. After 3-4 weeks of culture, the flower buds were developed from flowergenic callus. The continuous production of flowergenic callus was proliferated, when subcultured on the medium containing 0.5mg/L NAA and 0.5mg/L kinetin. However, frequency of flower bud formation from flowergenic callus was decreased as the subculture was repeated. Histological observation reveals that the developmental pattern of flower bud from flowergenic callus was closely similar to that of natural flowers.

  • PDF

Study on the Forulation of Dormancy Bud and Inflorescence in Young Ginseng Plant (저년생 인삼의 잠아 및 화서형성에 관한 연구)

  • 안상득;김요태
    • Journal of Ginseng Research
    • /
    • v.11 no.2
    • /
    • pp.111-117
    • /
    • 1987
  • The phase and times on the development of dormancy bud in seedling, and those of flower organs in 2-year-old ginseng are different to those of over 2-,3-year-old plant, respectively. The growing aspects of dormancy bud in seedling were investigated from rooting stage (April, 8) to Mid-June, and those of flower organs in 2-year-old plant had done once in two days late in April after compound leaves were unfolded. Firstly, the formation of dormancy bud in seedling was begun on Mid-late in March. This is early about one month compare with those of over 2-year-old plant. Fine bud in seedling was formed between cotyledons, at W spot under young shoot. Secondly, development of flower organs in 2-year-old plant was completed from late of April to early of May after compound leaves of transplanted plant were unfolded. In tare, this is very different characteristics because plants of any other ages form the flower organs one year ago. Thirdly, flower organs of ginseng plant, over 3-year-old plant, always develop in the rhizome formed one year ago, but those of 2-year-old plant develop in apical shoot meristem.

  • PDF

Effect of Sowing Time on Flower Bud Differentiation in Chicory (Cichorium intybus L.) (파종시기가 Chicory의 화아분화에 미치는 영향)

  • Bae Jong-Hyang;Han Suk-Kyo
    • Journal of Bio-Environment Control
    • /
    • v.15 no.3
    • /
    • pp.283-288
    • /
    • 2006
  • Characteristics of the rootstock formation and flower bud differentiation according to sowing time for production of the high quality rootstock in Chicory (Cichorium intybus L.) was investigated. The flower bud initiation was on the 17th of July after sowing in April, the 2nd of July after sowing in May, the 30th of July after sowing in June and the 1st of October after sowing in July. But they didn't differentiate after sowing in August and September. The days required from germination to flower bud initiation and accumulated temperature depended on the weather. If the outside air temperature was high, the days required were less, If the outside air temperature was low, the days required were greater, the accumulated temperature was similar to the days required in this experement, too. The rootstock sown from April to July wasn't good enough to be use because the flower bud differentiation was generated before harvestable weight. the weight of rootstock was sown in September wasn't heavy enough in weight because the outside air temperature was too low for it to grow well. The plant grows slow and steady through out winter. The rootstock sown in August was havestable 200g in 90 days after sowing before the flower bud differentiated. The best sowing time for the production of high quality rootstock of Chico in the climate of Korea is researched to be August.