• 제목/요약/키워드: flow-induced vibrations

검색결과 84건 처리시간 0.025초

Wind-induced self-excited vibrations of a twin-deck bridge and the effects of gap-width

  • Qin, X.R.;Kwok, K.C.S.;Fok, C.H.;Hitchcock, P.A.;Xu, Y.L.
    • Wind and Structures
    • /
    • 제10권5호
    • /
    • pp.463-479
    • /
    • 2007
  • A series of wind tunnel sectional model dynamic tests of a twin-deck bridge were conducted at the CLP Power Wind/Wave Tunnel Facility (WWTF) of The Hong Kong University of Science and Technology (HKUST) to investigate the effects of gap-width on the self-excited vibrations and the dynamic and aerodynamic characteristics of the bridge. Five 2.9 m long models with different gap-widths were fabricated and suspended in the wind tunnel to simulate a two-degrees-of-freedom (2DOF) bridge dynamic system, free to vibrate in both vertical and torsional directions. The mass, vertical frequency, and the torsional-to-vertical frequency ratio of the 2DOF systems were fixed to emphasize the effects of gap-width. A free-vibration test methodology was employed and the Eigensystem Realization Algorithm (ERA) was utilized to extract the eight flutter derivatives and the modal parameters from the coupled free-decay responses. The results of the zero gap-width configuration were in reasonable agreement with the theoretical values for an ideal thin flat plate in smooth flow and the published results of models with similar cross-sections, thus validating the experimental and analytical techniques utilized in this study. The methodology was further verified by the comparison between the measured and predicted free-decay responses. A comparison of results for different gap-widths revealed that variations of the gap-width mainly affect the torsional damping property, and that the configurations with greater gap-widths show a higher torsional damping ratio and hence stronger aerodynamic stability of the bridge.

Screening Method for Flow-induced Vibration of Piping Systems for APR1400 Comprehensive Vibration Assessment Program (APR1400 종합진동평가를 위한 배관시스템의 유동유발진동 간이평가)

  • Ko, Do-Young;Kim, Dong-Hak
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • 제25권9호
    • /
    • pp.599-605
    • /
    • 2015
  • The revised U.S. Nuclear Regulatory Commission(NRC), Regulatory Guide(RG) 1.20, rev.3 requires the evaluation of the potential adverse effects from pressure fluctuations and vibrations on piping and components for the reactor coolant, steam, feedwater, and condensate systems. Detailed vibration analyses for the systems attached to the steam generator are very difficult, because these piping systems are very complicated. This paper suggests a screening method for the flow-induced vibration of acoustic resonances and pump-induced vibration of the piping systems attached to the steam generator in order to conduct the APR1400 comprehensive vibration assessment program. This paper seeks to address the areas such as potential vibration sources, and methods to prevent the occurrence of acoustic resonances and pump-induced vibration of piping systems attached to the steam generator, for conducting the APR1400 comprehensive vibration assessment program. The screening method in this paper will be used to estimate the flow-induced vibration of the piping systems attached to the steam generator for the APR1400.

Fluid-dynamic Forces Acting on the Rotating Inner Cylinder In Concentric Annulus (동심환내에서 회전하는 실린더에 작용하는 유체동하중)

  • 심우건
    • Journal of KSNVE
    • /
    • 제11권3호
    • /
    • pp.428-436
    • /
    • 2001
  • The rotating inner cylinder executes a periodic translational motion in concentric annulus while the outer one is stationary. In the study of flow-induced vibrations and relaxed instabilities, it is of interest to evaluate the fluid-dynamic forces acting on the rotating inner cylinder. In the present work, the governing equations for the confined flow are expressed as Navier-Stokes equations, including the steady and unsteady terms. The fluid parameters for steady flow generated by the rotating cylinder are determined analytically while the unsteady ones by the oscillatory motion are evaluates by a numerical method based on the spectral collocation method. In order to validate the numerical approach, the numerical results are compared wish the analytical ones given by existing theories, for simple cases where the both approaches are applicable. Good agreement was found between the results. It is found the effects of the Reynolds number, defined by rotating velocity, on the fluid-dynamic forces are important for the case of relatively low oscillatory Reynolds number, defined by oscillatory frequency : j.e., in case of $Re_\omega\gg Re_S$.

  • PDF

Multi-Physics Simulations of Fluidelastic Instability for Tube Bundles in Cross-Flow (유체-구조 상호작용을 적용한 튜브다발의 유체탄성불안정성 과도적 전산해석)

  • Lee, Min-Hyung;Kim, Yong-Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제28권2호
    • /
    • pp.174-180
    • /
    • 2004
  • Failure of tube bundles due to excessive flow-induced vibrations continues to affect the performance of nuclear power plant Early experimental studies concentrated on rigid structures and later investigators dealt with elastic structures because of their importance in many engineering fields. On the other hand, much less numerical work has been carried out, because of the numerical complexity associated with the problem. Conventional approaches usually decoupled the flow solution from the structural problem. The present numerical study proposes the methodology in analyzing the fluidelastic instability occurring in tube bundles by coupling the Computational fluid Dynamics (C%) with the tube equation of motions. The motion of the structures is modeled by a spring-damper-mass system that allows transnational motion in two directions (a two-degree-of-freedom system). The fluid motion and the cylinder response are solved in an iterative way, so that the interaction between the fluid and the structure can be accounted for property. The aim of the present work is to predict the fluidelstic instability of tube bundles and the associated phenomena, such as the response of the cylinder, the unsteady lift and drag on the cylinder, the vortex shedding frequency.

Flow-induced pressure fluctuations of a moderate Reynolds number jet interacting with a tangential flat plate

  • Marco, Alessandro Di;Mancinelli, Matteo;Camussi, Roberto
    • Advances in aircraft and spacecraft science
    • /
    • 제3권3호
    • /
    • pp.243-257
    • /
    • 2016
  • The increase of air traffic volume has brought an increasing amount of issues related to carbon and NOx emissions and noise pollution. Aircraft manufacturers are concentrating their efforts to develop technologies to increase aircraft efficiency and consequently to reduce pollutant discharge and noise emission. Ultra High By-Pass Ratio engine concepts provide reduction of fuel consumption and noise emission thanks to a decrease of the jet velocity exhausting from the engine nozzles. In order to keep same thrust, mass flow and therefore section of fan/nacelle diameter should be increased to compensate velocity reduction. Such feature will lead to close-coupled architectures for engine installation under the wing. A strong jet-wing interaction resulting in a change of turbulent mixing in the aeroacoustic field as well as noise enhancement due to reflection phenomena are therefore expected. On the other hand, pressure fluctuations on the wing as well as on the fuselage represent the forcing loads, which stress panels causing vibrations. Some of these vibrations are re-emitted in the aeroacoustic field as vibration noise, some of them are transmitted in the cockpit as interior noise. In the present work, the interaction between a jet and wing or fuselage is reproduced by a flat surface tangential to an incompressible jet at different radial distances from the nozzle axis. The change in the aerodynamic field due to the presence of the rigid plate was studied by hot wire anemometric measurements, which provided a characterization of mean and fluctuating velocity fields in the jet plume. Pressure fluctuations acting on the flat plate were studied by cavity-mounted microphones which provided point-wise measurements in stream-wise and spanwise directions. Statistical description of velocity and wall pressure fields are determined in terms of Fourier-domain quantities. Scaling laws for pressure auto-spectra and coherence functions are also presented.

Collision-induced Energy Transfer and Bond Dissociation in Toluene by H2/D2

  • Ree, Jongbaik;Kim, Yoo Hang;Shin, Hyung Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권12호
    • /
    • pp.3641-3648
    • /
    • 2013
  • Energy transfer and bond dissociation of $C-H_{methyl}$ and $C-H_{ring}$ in excited toluene in the collision with $H_2$ and $D_2$ have been studied by use of classical trajectory procedures at 300 K. Energy lost by the vibrationally excited toluene to the ground-state $H_2/D_2$ is not large, but the amount increases with increasing vibrational excitation from 5000 and $40,000cm^{-1}$. The principal energy transfer pathway is vibration to translation (V-T) in both systems. The vibration to vibration (V-V) step is important in toluene + $D_2$, but plays a minor role in toluene + $H_2$. When the incident molecule is also vibrationally excited, toluene loses energy to $D_2$, whereas it gains energy from $H_2$ instead. The overall extent of energy loss is greater in toluene + $D_2$ than that in toluene + $H_2$. The different efficiency of the energy transfer pathways in two collisions is mainly due to the near-resonant condition between $D_2$ and C-H vibrations. Collision-induced dissociation of $C-H_{methyl}$ and $C-H_{ring}$ bonds occurs when highly excited toluene ($55,000-70,400cm^{-1}$) interacts with the ground-state $H_2/D_2$. Dissociation probabilities are low ($10^{-5}{\sim}10^{-2}$) but increase exponentially with rising vibrational excitation. Intramolecular energy flow between the excited C-H bonds occurring on a subpicosecond timescale is responsible for the bond dissociation.

A study of internal wave influence on OTEC systems

  • Shi, Shan;Kurup, Nishu V.;Halkyard, John;Jiang, Lei
    • Ocean Systems Engineering
    • /
    • 제3권4호
    • /
    • pp.309-325
    • /
    • 2013
  • Ocean Thermal Energy Conversion (OTEC) systems utilize the temperature difference between the surface water and deep ocean water to generate electrical energy. In addition to ocean surface waves, wind and current, in certain locations like the Andaman Sea, Sulu Sea and the South China Sea the presence of strong internal waves may become a concern in floating OTEC system design. The current paper focuses on studying the dependence of the CWP hydrodynamic drag on relative velocity of the flow around the pipe, the effect of drag amplification due to vortex induced vibrations and the influence of internal waves on the floating semi and the cold water pipe integrated OTEC system. Two CWP sizes are modeled; the 4m diameter pipe represents a small scale prototype and the 10m diameter pipe represents a full commercial size CWP. are considered in the study.

Selection Criteria of Measurement Locations for Advanced Power Reactor 1400 Reactor Vessel Internals Comprehensive Vibration Assessment Program (APR1400 원자로내부구조물 종합진동평가 측정위치 선정 기준)

  • Ko, Do-Young;Kim, Kyu-Hyung;Kim, Sung-Hwan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • 제21권8호
    • /
    • pp.708-713
    • /
    • 2011
  • U.S. nuclear regulatory commission(NRC) regulatory guide(RG) 1.20 requires a comprehensive vibration assessment program(CVAP) for use in verifying the structural integrity of reactor vessel internals(RVI) for flow-induced vibrations prior to commercial operation. The CVAP program consist of vibration and fatigue analysis, a vibration measurement program, an inspection program, and a correlation of their results. One of the main purposes of the analysis program is to select measurement locations, however measurement locations can not be determined by only analysis results, therefore we developed selection criteria of measurement locations for advanced power reactor 1400(APR1400) RVI CVAP, It will be used to select measurement locations and instrument types for APR1400 RVI CVAP.

Aerodynamic and Flow Characteristics of Tall Buildings with Various Unconventional Configurations

  • Tanaka, Hideyuki;Tamura, Yukio;Ohtake, Kazuo;Nakai, Masayoshi;Kim, Yong Chul;Bandi, Eswara Kumar
    • International Journal of High-Rise Buildings
    • /
    • 제2권3호
    • /
    • pp.213-228
    • /
    • 2013
  • Tall buildings have been traditionally designed to be symmetric rectangular, triangular or circular in plan, in order to avoid excessive seismic-induced torsional vibrations due to eccentricity, especially in seismic-prone regions like Japan. However, recent tall building design has been released from the spell of compulsory symmetric shape design, and free-style design is increasing. This is mainly due to architects' and structural designers' challenging demands for novel and unconventional expressions. Another important aspect is that rather complicated sectional shapes are basically good with regard to aerodynamic properties for crosswind excitations, which are a key issue in tall-building wind-resistant design. A series of wind tunnel experiments and numerical simulation have been carried out to determine aerodynamic forces and wind pressures acting on tall building models with various configurations: corner cut, setbacks, helical and so on. Dynamic wind-induced response analyses of these models have also been conducted. The results of these experiments have led to comprehensive understanding of the aerodynamic characteristics of tall buildings with various configurations.

Pressure Drop Variations and Structural Characteristics of SMART Nuclear Fuel Assembly Caused by Coolant Flow (냉각유동에 의한 SMART 핵연료집합체의 압력강하변화 및 구조특성)

  • Jin, Hai Lan;Lee, Young Shin;Lee, Hyun Seung;Park, Nam Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제36권12호
    • /
    • pp.1653-1661
    • /
    • 2012
  • In this study, the pressure drop changes and structural characteristics of a SMART rod bundle under the effect of a coolant were investigated. The turbulence model of the BSL Reynolds stress model was used to model the coolant flow, and a fluid solid interaction simulation was conducted. First, fuel rod vibration analysis was performed to confirm the natural frequency of the fuel rod, which was supported by spacer grid assemblies, and this was compared with experimental results. From the experimental results, the natural frequency was found to be 48 Hz, and the error compared with the simulation results was 2%. The pressure drop at the rod bundle was calculated and compared with the experimental data; it showed an error of 8%, demonstrating the simulation accuracy. In the flow analysis, the flow velocity and secondary flow at different domains were calculated, and vortex generation was also observed. Finally, through the fluid solid interaction analysis, the fuel rod displacements caused by flow-induced vibrations were calculated. Then, calculated displacement PSD at maximum displacement happed point.