• Title/Summary/Keyword: flow resistance stress

Search Result 112, Processing Time 0.027 seconds

Novel High Step-Up DC/DC Converter Structure Using a Coupled Inductor with Minimal Voltage Stress on the Main Switch

  • Moradzadeh, Majid;Hamkari, Sajjad;Zamiri, Elyas;Barzegarkhoo, Reza
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2005-2015
    • /
    • 2016
  • A high-step-up DC/DC converter for renewable energy systems is proposed. The proposed structure provides high voltage gain by using a coupled inductor without the need for high duty cycles and high turn ratios. The voltage gain is increased through capacitor-charging techniques. In the proposed converter, the energy of the leakage inductors of the coupled inductor is reused. This feature reduces the stress on the switch. Therefore, a switch with low ON-state resistance can be used in the proposed converter to reduce losses and increase efficiency. The main switch is placed in series with the source. Therefore, the converter can control the energy flow from the source to the load. The operating principle is discussed in detail, and a steady state analysis of the proposed converter is conducted. The performance of the proposed converter is verified by experimental results.

Effect of Impressed Potential on the SCC of Al-Brass (Al-황동의 응력부식균열 특성에 미치는 인가전위의 영향)

  • 정해규;임우조
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.1
    • /
    • pp.69-74
    • /
    • 2004
  • In general, the protection method of Shell and Tube Type heat exchanger for a vessel has been applied as a sacrificial anode, which is attached at the inner side of the shell. However, this is an insufficient protection method for tube. Therefore, a more suitable method, such as the impressed current cathodic protection for tube protection, is required. Al-brass is the raw material of tubes for heat exchanger of a vessel where seawater is used for cooling the water. It has a high level of heat conductivity, excellent mechanical properties, and a high level of corrosion resistance, due to a cuprous oxide (Cu$_2$O) layer against th seawater. However, in actuality, it has been reported that Al-brass tubes for heat exchanger of a vessel can produce local corrosion, such as stress corrosion cracking (SCC). This paper studied the effect of impressed potential on the stress corrosion cracking of Al-brass for impressed current cathodic protection in 3.5% NaCl +0.1% NH$_4$OH solution, under flow by a constant displacement tester. Based on the test results, the latent time of SCC, stress corrosion crack propagation, and the dezincification phase of Al-brass are investigated.

Effects of normal stress, shearing rate, PSD and sample size on behavior of ballast in direct shear tests using DEM simulation

  • Md Hussain;Syed Khaja Karimullah Hussaini
    • Geomechanics and Engineering
    • /
    • v.35 no.5
    • /
    • pp.475-486
    • /
    • 2023
  • Ballast particles have an irregular shape and are discrete in nature. Due to the discrete nature of ballast, it exhibits complex mechanical behaviour under loading conditions. The discrete element method (DEM) can model the behaviour of discrete particles under a multitude of loading conditions. DEM is used in this paper to simulate a series of three-dimensional direct shear tests in order to investigate the shear behaviour of railway ballast and its interaction at the microscopic level. Particle flow code in three dimension (PFC3D) models the irregular shape of ballast particles as clump particles. To investigate the influence of particle size distribution (PSD), real PSD of Indian railway ballast specification IRS:GE:1:2004, China high-speed rail (HSR) and French rail specifications are generated. PFC3D built-in linear contact model is used to simulate the interaction of ballast particles under various normal stresses, shearing rate and shear box sizes. The results indicate how shear resistance and volumetric changes in ballast assembly are affected by normal stress, shearing rate, PSD and shear box size. In addition to macroscopic behaviour, DEM represents the microscopic behaviour of ballast particles in the form of particle displacement at different stages of the shearing process.

1D Numerical Model for Rivers Flows with Emergent Vegetations on Floodplains and Banks (정수식생이 존재하는 자연하도에서 1차원 수치모형)

  • Song, Ju-Il;Kim, Jong-Woo;Rim, Chang-Soo;Yoon, Sei-Eui
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.1
    • /
    • pp.9-22
    • /
    • 2011
  • A 1D numerical model for steady flow, based on the energy equation, was developed for natural rivers with emergent vegetations on floodplains and banks. The friction slope was determined by the friction law of Darcy-Weisbach. The composite friction factor of the each cross section was calculated by considering bottom roughness of the main channel and the floodplains, the flow resistance of vegetations, the apparent shear stress and the flow resistance caused by the momentum transfer between vegetated areas and non-vegetated areas. The interface friction factor caused by flow interaction was calculated by empirical formulas of Mertens and Nuding. In order to verify the accuracy of the suggested model, water surface elevations were calculated by using imaginary compound channels and the results of calculations were compared with that of the HEC-RAS. The sensitivity analysis was performed to confirm changed friction factors by vegetations density etc. The suggested model was applied to the reach of the Enz River in Germany, and estimated water surface elevations of the Enz River were compared with measured water surface elevations. This model could acceptably compute not only water surface elevations with low discharge but also that with high discharge. So, the suggested model in this study verified the applicability in natural rivers with emergent vegetations.

An Experimental Study on Velocity Profile in a Vegetated Channel (식생수로의 유속분포에 관한 실험적 연구)

  • Kwon, Do Hyun;Park, Sung Sik;Baek, Kyung Won;Song, Jai Woo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.957-960
    • /
    • 2004
  • From a water-environmental point of view, with a change of understanding and concern about vegetation, it changes that vegetation acts as stability of channel and bed, providing habitats and feed for fauna, and means improving those with appreciation of the beautiful but resistant factor to the flow So, it becomes important concern and study subjects that turbulent structure by vegetation, shear stress and transport as well as roughness and average velocity by vegetation. But from a hydraulic point of view, vegetation causes resistance to the flow and can increase the risk of flooding, Therefore, this thesis concern the flow characteristics in vegetated open channels. According to the experimental results, $z_0$ was on an average $0.4h_p$ in a vegetated open channel. So, the elevation corresponding to zero velocity in a vegetated channel was the middle of roughness element. The limit for logarithmically distributed profile over the roughness element was from $z_0$ to $0.80h_{over}$ for a vegetated channel. Among the existing theory, the method of Kouwen et al.(1969), Haber(1982), and El-Hakim and Salama(1992) except Stephan(2001) gave a very good value compared to the measured velocity profile.

  • PDF

One-Dimensional Model for Flow Resistance of Floodplain Vegetation in Compound Open-Channel Flow (복단면 개수로흐름에서 홍수터 식생의 흐름저항을 반영한 1차원 모형)

  • Park, Moon-Hyeong
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.6
    • /
    • pp.517-524
    • /
    • 2010
  • In this study, the 1D apparent shear stress model for vegetated compound open-channel flows was suggested. To consider the effect of momentum exchange between main channel and floodplain, the eddy viscosity concept was used in the present model. The interfacial eddy viscosity in the interface of main channel and floodplain was determined from the 3D Reynolds stress model. The evaluated interfacial eddy viscosity appears to be good agreement with those proposed previously. To investigate the effect of interfacial eddy viscosity, sensitive analysis was carried out. the computed backwater profiles are nearly identical with respect to the value of the interfacial eddy viscosity. However, the discharge conveyed by the floodplain changes is proportional to the interfacial eddy viscosity. Finally, the changes of the interfacial eddy viscosity due to the vegetation density and vegetation height were examined. The computed results of interfacial eddy viscosity are in proportion to the vegetation density and vegetation height, and the interfacial eddy viscosity has a range of $(2-5)\;{\times}\;10^{-4}$.

Generation of Fine Droplets in a Simple Microchannel (유체 소자를 이용한 미세 액적 생성)

  • Kim, Su-Dong;Kim, Young-Won;Yoo, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.7
    • /
    • pp.671-677
    • /
    • 2010
  • In the present study, we designed a microfluidic platform for generating monodisperse droplets with diameters ranging from hundreds of nanometers to several micrometers. To generate fine droplets, T-junction and flow-focusing geometry are integrated into the microfluidic channel. Relatively large aqueous droplets are generated at the upstream T-junction and transported to the flow-focusing geometry, where each droplet is broken into smaller droplets of the desired size by the action of pressure and viscous stress. In this configuration, the flow rate of the inner fluid can be made very low, and the ratio of the inner- and outer-fluid flow rates in the flow-focusing region can be made very high. It has been shown that the present microfluidic device can generate droplets with diameters of approximately $1\;{\mu}m$ (standard deviation: <3%).

The electrical effects of PV cell's short-circuit current difference for PV module application (태양전지의 단락전류 편차가 태양전지모듈에 미치는 전기적인 영향 분석)

  • Kim, Seung-Tae;Park, Chi-Hong;Kang, Gi-Hwan;Ahn, Hyung-Keun;Han, Deuk-Young;Yu, Gwon-Jong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.3-4
    • /
    • 2008
  • Photovoltaic module consists of serially connected solar cell which has low voltage characteristics. But, the other way, the whole current flow of PV module is restricted by lowest current of one solar cell. For the experiment, we make PV module composing the solar cells that have short circuit current difference of 0%, 1%, 3% and 5%. Using Light I-V and Dark I-V measurements, electrical characteristic parameters like Isc(short-circuit current), Voc(open-circuit voltage), Rs(series resistance), Rsh(shunt resistance) are analyzed. PV module of low current characteristics has electrical stress from other modules. And, such a module has a tendency of hot-spot suffering which leads degradation.

  • PDF

Low-temperature Mechanical Behavior of Super Duplex Stainless Steel Considering High Temperature Environment (고온 환경의 영향을 고려한 슈퍼듀플렉스 강의 저온 기계적 거동 평가)

  • Kim, Myung-Soo;Jung, Won-Do;Kim, Jeong-Hyeon;Lee, Jae-Myung
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.306-313
    • /
    • 2014
  • Super duplex stainless steels (sDSS) are excellent for use under severely corrosive conditions such as offshore and marine applications like pipelines and flanges. sDSS has better mechanical properties and corrosion resistance than the standard duplex stainless steel (DSS) but it is easier for a sigma phase to appear, which depresses the mechanical property and corrosion resistance, compared to DSS, because sDSS has a higher alloy element than DSS. In addition, sDSS has a feeble ductile-brittle transition temperature (DBTT) because it has a 50% ferrite microstructure. In the actual operating environment, sDSS would be thermally affected by welding and a sub-zero temperature environment. This study analyzed how precipitated sDSS behaves at a sub-zero temperature through annealing heat treatment and a sub-zero tensile test. Six types of specimens with annealing times of up to 60 min were tested in a sub-zero chamber. According to the experimental results, an increase in the annealing time reduced the elongation of sDSS, and a decrease in the tensile test temperature raises the flow stress and tensile stress. In particular, the elongation of specimens annealed for 15 min and 30 min was clearly lowered with a decrease in the tensile test temperature because of the increasing sigma phase fraction ratio.

A CONTROLLED CYCLIC LOADING ON THE SURFACE TREATED AND BONDED CERAMIC: STAIRCASE METHOD

  • Yi, Yang-Jin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.3
    • /
    • pp.298-306
    • /
    • 2008
  • STATEMENT OF PROBLEM: Effect of surface treatment of ceramic under loading does not appear to have been investigated. PURPOSE: The aim of this study was to investigate the effect of surface treatment of esthetic ceramic, which is performed to increase the bonding strength, on the fracture stress under controlled cyclic loading condition. MATERIAL AND METHODS: Sixty 1.0 mm-thick specimens were made from Mark II Vitablocs (Vita Zahnfabrik, Germany) and divided into 3 groups: polished (control), sandblasted, and etched. Specimens of each group were bonded to a dentin analog material base including micro-channels to facilitate the flow of water to the bonding interface. Bonded ceramics were cyclically loaded with a flat-end piston in the water (500,000 cycles, 15Hz). Following completion of cyclic loading, specimens were examined for subsurface crack formation and subsequent stress was determined and loaded to next specimen by the staircase method according to the crack existence. RESULTS: There were significant differences of mean fatigue limit in the sandblasted (222.86 ${\pm}$ 23.42 N) and etched group (222.86 ${\pm}$ 14.16 N) when compared to polished group (251.43 ${\pm}$ 10.6 N) (P<.05; Wald-type pair-wise comparison and post hoc Bonferroni test). Of cracked specimens, surface treated group showed longer crack propagation after 24 hours. All failures originated from the radial cracking without cone crack. Fracture resistance of this study was very low and comparable to failure load in the oral cavity. CONCLUSION: Well controlled cyclic loading could induce clinically relevant cracks and fracture resistance of Mark II ceramic was relatively low applicable only to anterior restorations. Surface treatment of inner surface of feldspathic porcelain in the matsicatory area could influence lifetime of restorations.