• Title/Summary/Keyword: flow net analysis

검색결과 492건 처리시간 0.024초

PBF 방식 금속 3D프린터로 제작된 환경DNA 필터 케이스의 내부 형상이 포집 성능에 미치는 영향 (Effect of the Internal Shape of eDNA Filter Case made by the PBF method Metal 3D Printer on Water Sampling Performance)

  • 이승민;박세현;곽인실;김형호;곽태수
    • 한국기계가공학회지
    • /
    • 제20권8호
    • /
    • pp.74-79
    • /
    • 2021
  • This study focuses on designing a filter case using a water pump for application in eDNA filtering systems. Filter cases, channel type and net type were designed based on the flow field and made using a 3D printer for metal. Flow analysis was conducted for each filter case, and the results were consistent with the pressure experiment results. Furthermore, the water sampling performance test showed that the channel-type filter case exhibited a high flow rate and low pressure through the filter. The eDNA extraction experiment showed that the channel type exhibited improved capture ability compared to the net type.

Conceptual design of small modular reactor driven by natural circulation and study of design characteristics using CFD & RELAP5 code

  • Kim, Mun Soo;Jeong, Yong Hoon
    • Nuclear Engineering and Technology
    • /
    • 제52권12호
    • /
    • pp.2743-2759
    • /
    • 2020
  • A detailed computational fluid dynamics (CFD) simulation analysis model was developed using ANSYS CFX 16.1 and analyzed to simulate the basic design and internal flow characteristics of a 180 MW small modular reactor (SMR) with a natural circulation flow system. To analyze the natural circulation phenomena without a pump for the initial flow generation inside the reactor, the flow characteristics were evaluated for each output assuming various initial powers relative to the critical condition. The eddy phenomenon and the flow imbalance phenomenon at each output were confirmed, and a flow leveling structure under the core was proposed for an optimization of the internal natural circulation flow. In the steady-state analysis, the temperature distribution and heat transfer speed at each position considering an increase in the output power of the core were calculated, and the conceptual design of the SMR had a sufficient thermal margin (31.4 K). A transient model with the output ranging from 0% to 100% was analyzed, and the obtained values were close to the Thot and Tcold temperature difference value estimated in the conceptual design of the SMR. The K-factor was calculated from the flow analysis data of the CFX model and applied to an analysis model in RELAP5/MOD3.3, the optimal analysis system code for nuclear power plants. The CFX analysis results and RELAP analysis results were evaluated in terms of the internal flow characteristics per core output. The two codes, which model the same nuclear power plant, have different flow analysis schemes but can be used complementarily. In particular, it will be useful to carry out detailed studies of the timing of the steam generator intervention when an SMR is activated. The thermal and hydraulic characteristics of the models that applied porous media to the core & steam generators and the models that embodied the entire detail shape were compared and analyzed. Although there were differences in the ability to analyze detailed flow characteristics at some low powers, it was confirmed that there was no significant difference in the thermal hydraulic characteristics' analysis of the SMR system's conceptual design.

IPMC 작동기로 구동되는 초소형 비행체 날개의 공기흐름 조절용 ZNMF(zero-net-mass-flux) 펌프의 예비설계 및 해석 (Design and Analysis of IPMC Actuator-driven ZNMF Pump for Air Flow Control of MAV's Wing)

  • 이상기;김광진;박훈철
    • 한국항공우주학회지
    • /
    • 제34권3호
    • /
    • pp.22-30
    • /
    • 2006
  • 본 논문은 초소형 비행체 날개 주위의 공기흐름 조절을 위한 IPMC 작동기로 구동되는 ZNMF 펌프의 체계적인 설계 및 해석 기법을 소개한다. IPMC는 낮은 인가전압에서 큰 굽힘 변위를 발생시키며, 공기 중에서도 작동이 가능하고, 작은 크기로 손쉽게 제작할 수 있기 때문에 소형 펌프의 작동 막으로 매우 적합한 재료이다. 본 연구에서는 수치해석 기법을 이용하여 최대 작동 체적을 발생시키는 IPMC 작동 막의 최적 형상을 찾고, 이러한 최적형상에 기초하여 슬롯을 갖는 ZNMF 펌프를 설계하였다. 이후 초소형 비행체의 비행속도, 펌프 작동 막의 구동 주파수(~ 40 Hz), 슬롯을 통과하는 공기의 속도 등을 이용하여 무차원화 된 진동수와 모멘텀 계수를 구하였고, 설계된 ZNMF 펌프가 초소형 비행체 날개의 공기흐름 조절에 적용이 가능함을 보였다.

Reclaiming Multifaceted Financial Risk Information from Correlated Cash Flows under Uncertainty

  • Byung-Cheol Kim;Euysup Shim;Seong Jin Kim
    • 국제학술발표논문집
    • /
    • The 5th International Conference on Construction Engineering and Project Management
    • /
    • pp.602-607
    • /
    • 2013
  • Financial risks associated with capital investments are often measured with different feasibility indicators such as the net present value (NPV), the internal rate of return (IRR), the payback period (PBP), and the benefit-cost ratio (BCR). This paper aims at demonstrating practical applications of probabilistic feasibility analysis techniques for an integrated feasibility evaluation of the IRR and PBP. The IRR and PBP are concurrently analyzed in order to measure the profitability and liquidity, respectively, of a cash flow. The cash flow data of a real wind turbine project is used in the study. The presented approach consists of two phases. First, two newly reported analysis techniques are used to carry out a series of what-if analyses for the IRR and PBP. Second, the relationship between the IRR and PBP is identified using Monte Carlo simulation. The results demonstrate that the integrated feasibility evaluation of stochastic cash flows becomes a more viable option with the aide of newly developed probabilistic analysis techniques. It is also shown that the relationship between the IRR and PBP for the wind turbine project can be used as a predictive model for the actual IRR at the end of the service life based on the actual PBP of the project early in the service life.

  • PDF

두 대의 펌프가 병렬로 설치된 장치의 유량 특성 (FLOW CHARACTERISTICS OF A SYSTEM WHICH HAS TWO PARALLEL PUMPS)

  • 박정근;박종호;박용철
    • 한국전산유체공학회지
    • /
    • 제17권4호
    • /
    • pp.1-8
    • /
    • 2012
  • During a reactor normal operation, two parallel 50% capacity cooling pumps circulate primary coolant to remove the fission reaction heat of the reactor through heat exchangers cold by a cooling tower. When one pump is failure, the other pump shall continuously circulate the coolant to remove the residual heat generated by the fuels loaded in the reactor after reactor shutdown. It is necessary to estimate how much flow rate will be supplied to remove the residual heat. We carried out a flow network analysis for the parallel primary pumps based on the piping network of the primary cooling system in HANARO. As result, it is estimated that the flow rate of one pump increased about 1.33 times the rated flow of one pump and was maintained within the limit of the cavitation critical flow.

Study on the effect of flow blockage due to rod deformation in QUENCH experiment

  • Gao, Pengcheng;Zhang, Bin;Shan, Jianqiang
    • Nuclear Engineering and Technology
    • /
    • 제54권8호
    • /
    • pp.3154-3165
    • /
    • 2022
  • During a loss-of-coolant accident (LOCA) in the pressurized water reactor (PWR), there is a possibility that high temperature and internal pressure of the fuel rods lead to ballooning of the cladding, which causes a partial blockage of flow area in a subchannel. Such flow blockage would influence the core coolant flow, thus affecting the core heat transfer during a reflooding phase and subsequent severe accident. However, most of the system analysis codes simulate the accident process based on the assumed channel blockage ratio, resulting in the fact that the simulation results are not consistent with the actual situation. This paper integrates the developed core Fuel Rod Thermal-Mechanical Behavior analysis (FRTMB) module into the self-developed severe accident analysis code ISAA. At the same time, the existing flow blockage model is improved to make it possible to simulate the change of flow distribution due to fuel rod deformation. Finally, the ISAA-FRTMB is used to simulate the QUENCH-LOCA-0 experiment to verify the correctness and effectiveness of the improved flow blockage model, and then the effect of clad ballooning on core heat transfer and subsequent parts of core degradation is analyzed.

DEVELOPMENT AND VALIDATION OF A NUCLEAR FUEL CYCLE ANALYSIS TOOL: A FUTURE CODE

  • Kim, S.K.;Ko, W.I.;Lee, Yoon Hee
    • Nuclear Engineering and Technology
    • /
    • 제45권5호
    • /
    • pp.665-674
    • /
    • 2013
  • This paper presents the development and validation methods of the FUTURE (FUel cycle analysis Tool for nUcleaR Energy) code, which was developed for a dynamic material flow evaluation and economic analysis of the nuclear fuel cycle. This code enables an evaluation of a nuclear material flow and its economy for diverse nuclear fuel cycles based on a predictable scenario. The most notable virtue of this FUTURE code, which was developed using C# and MICROSOFT SQL DBMS, is that a program user can design a nuclear fuel cycle process easily using a standard process on the canvas screen through a drag-and-drop method. From the user's point of view, this code is very easy to use thanks to its high flexibility. In addition, the new code also enables the maintenance of data integrity by constructing a database environment of the results of the nuclear fuel cycle analyses.

유연생산 시스템 스케쥴링 분석을 위한 추이적 행렬을 이용한 패트리 넷의 분할 (Slices Method of Petri Nets Using the Transitive Matrix for Scheduling Analysis in FMS)

  • 송유진;김종욱;이종근
    • 제어로봇시스템학회논문지
    • /
    • 제8권4호
    • /
    • pp.292-298
    • /
    • 2002
  • We focus on the slicing off some sub-nets using the transitive matrix. Control flows in the Petri nets is done based on the token flows. One control f]ow explains the independent tokens status and if the token-in divides into several tokens after firing a transition then the control flow divides to several flows, as well. Accordingly, we define that the basic unit of concur-rency (short BUC) is a set of the executed control flows based on the behavioral properties in the net. The BUC is S-invariant which has one control flow. We show the usefulness of transitive matrix to slice off some subnets from the original net based on BUC-through on an example.

Research of the impact of material and flow properties on fluid-structure interaction in cage systems

  • Mehmet Emin Ozdemir;Murat Yaylaci
    • Wind and Structures
    • /
    • 제36권1호
    • /
    • pp.31-40
    • /
    • 2023
  • This paper investigates the mechanical behavior of full-scale offshore fish cages under hydrodynamic loads. To simulate different cases, different materials were used in the fish cage and analyzed under different flow velocities. The cage system is studied in two parts: net cage and floating collar. Analyses were performed with the ANSYS Workbench program, which allows the Finite Element Method (FEM) and Computational Fluid Dynamics (CFD) method to be used together. Firstly, the fish cage was designed, and adjusted for FSI: Fluid (Fluent) analysis. Secondly, mesh structures were created, and hydrodynamic loads acting on the cage elements were calculated. Finally, the hydrodynamic loads were transferred to the mechanical model and applied as a pressure on the geometry. In this study, the equivalent (von Mises) stress, equivalent strain, and total deformation values of cage elements under hydrodynamic loads were investigated. The data obtained from the analyses were presented as figures and tables. As a result, it has been shown that it is appropriate to use all the materials examined for the net cage and the floating collar.

판재의 드로우비드 성형시 비드표면처리와 비드형상이 인출 및 마찰특성에 미치는 효과 (Effect of Bead Surface Treatments and Bead Shapes on the Drawing and Friction Characteristics in Drawbead Forming of Sheet Metal)

  • 이동활;류종수;정우창;문영훈
    • 열처리공학회지
    • /
    • 제18권2호
    • /
    • pp.105-111
    • /
    • 2005
  • In sheet metal forming, drawbeads are often used to control uneven material flow, which may cause defects such as wrinkles, fractures, surface distortion and springback. Appropriate setting and adjusting of the drawbead force is one of the most important parameters in sheet forming process control. Therefore in this study, drawbead test was performed at various bead surface treatment conditions to clarify the frictional characteristics between sheet and drawbead. Furthermore, the differences in drawing force between circular and rectangular shape beads have also been measured to estimate the effectiveness of bead shape on the material flow control. The results show that drawing and friction characteristic were strongly influenced by surface treatments of bead and bead shapes.