• Title/Summary/Keyword: flow level

Search Result 4,367, Processing Time 0.044 seconds

Derivation of Flood Hazard Curves for SOC Facilities under Local Intensive Precipitation (LIP(극한강우) 조건하에서 중요 SOC 시설물에 대한 재해도 곡선 작성)

  • Kim, Beom Jin;Han, Kun Yeun*
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.183-194
    • /
    • 2019
  • In recent years, the risk of external flooding of major national facilities has increased significantly since 2000 due to the increase in local heavy rainfall events. For important domestic national facilities, it is necessary to analyze the risk of external flooding as flooding in major sites due to heavy rain can cause functional paralysis in major facilities and ultimately lead to massive trouble events. In order to manage the safety of main facilities and its related facilities at a high level, it is necessary to analyze the degree of disaster such as flood depth, flood flow rate, flood time and flood intensity when extreme floods (LIP) are introduced. In addition, the degree of vulnerability of these related facilities should be assessed and risk assessments should be reassessed through linkage analysis that combines the degree of disaster and vulnerability. By calculating a new flood hazard curve for the flood depth and flood intensity in major national facilities under the heavy rainfall conditions through this study, it is expected to be a basis for the waterproof design of important SOC facilities, flood prevention function design, advancement of flood prevention measures and procedures and evaluation of flood mitigation functions.

Borehole Elemental Concentration Logs: Theory, Current Trends and Next Level (암석구성성분검층: 원리, 연구동향 및 향후 과제)

  • Shin, Jehyun;Hwang, Seho
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.3
    • /
    • pp.149-159
    • /
    • 2019
  • Borehole elemental concentration logging, measuring neutron-induced gamma rays by inelastic scattering and neutron capture interactions between neutron and formation, delivers concentrations of the most common elements found in the minerals and fluids of subsurface formation. X-ray diffraction and X-ray fluorescence analysis from core samples are traditionally used to understand formation composition and mineralogy, but it represents only part of formations. Additionally, it is difficult to obtain elemental analysis over the whole intervals because of poor core recovery zones such as fractures or sand layers mainly responsible for groundwater flow. The development of borehole technique for in situ elemental analysis plays a key role in assessing subsurface environment. Although this technology has advanced consistently starting from conventional and unconventional resources evaluation, it has been considered as exclusive techniques of some major service company. As regards domestic research and development, it has still remained an unexplored field because of some barriers such as the deficiency of detailed information on tools and calibration facility for chemistry and mineralogy database. This article reviews the basic theory of spectroscopy measurements, system configuration, calibration facility, and current status. In addition, this article introduces the domestic researches and self-development status on borehole elemental concentration tools.

Threshold Condition for Exclusion of Riprap into Bypass Pipe (저층수 배출관에 유입된 사석의 배제 한계조건)

  • Jeong, Seokil;Lee, Seung Oh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.12 no.1
    • /
    • pp.57-66
    • /
    • 2019
  • One of the most serious problems with concrete small dams or barriers installed in small/median rivers is the deposit of sediments, especially, in Korea. An effective way to discharge such sediments to downstream is to construct a bypass pipe under the river bed. However, efficiency may become lowered if ripraps are entered into the bypass pipe. Therefore, in this study, we derived the threshold condition for the exclusion of ripraps from the bypass pipe using 3D numerical analysis. Upstream flow of the small dam was assumed to be stationary, and the energy concept was applied to the control volume containing the bypass pipe and its periphery. As a result, when the ratio of the water level difference between upstream and downstream to the diameter of the riprap was approximately equal to 1.2, the threshold condition for exclusion of the stones or riprap from the bypass pipe was affirmatively determined. If the characteristics of the adsorptive sediment adversely affecting the river environment in the future would be taken into account, results from this study are expected to put to practical use in the management of concrete small dam with bypass pipe system.

A Study on the Light Extinction Characteristics in the Main Channel of Nakdong River by Monitoring Underwater Irradiance in Summer (수중 광량 모니터링을 통한 하절기 낙동강 본류 소광 특성 연구)

  • Kang, Mi-Ri;Min, Joong-Hyuk;Choi, Jungkyu;Park, Suyoung;Shin, Changmin;Kong, Dongsoo;Kim, Han Soon
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.6
    • /
    • pp.632-641
    • /
    • 2018
  • Algal dynamics is controlled by multiple environmental factors such as flow dynamics, water temperature, trophic level, and irradiance. Underwater irradiance penetrating from the atmosphere is exponentially decreased in water column due to absorption and scattering by water molecule and suspended particles including phytoplankton. As the exponential decrease in underwater irradiance affects algal photosynthesis, regulating their spatial distribution, it is critical to understand the light extinction characteristics to find out the mechanisms of algal dynamics more systematically. Despite the significance, the recent data have been rarely reported in the main stream areas of large rivers, Korea. In this study, the euphotic depths and light extinction coefficients were determined by monitoring the vertical variation of underwater irradiance and water quality in the main channel of Nakdong River near Dodong Seowon once a week during summer of 2016. The average values of euphotic depth and light extinction coefficient were 4.0 m and $1.3m^{-1}$, respectively. The degree of light extinction increased in turbid water due to flooding, causing an approximate 50 % decrease in euphotic depth. Also, the impact was greater than the self-shading effect during the periods of cyanobacterial bloom. The individual light extinction coefficients for background, total suspended solid and algal levels, frequently used in surface water quality modeling, were determined as $0.305m^{-1}$, $0.090m^{-1}/mg{\cdot}L^{-1}$, $0.013m^{-1}/{\mu}g{\cdot}L^{-1}$, respectively. The values estimated in this study were within or close to the ranges reported in literatures.

A Comparative Study on Direct Instrument Methods in Open Channel for Measuring River Water Usage (하천수 사용량 계측을 위한 개수로에서의 직접 계측방법 비교 연구)

  • Baek, Jongseok;Kim, Chiyoung;Lee, Kisung;Kang, Hyunwoong;Song, Jaehyun
    • Journal of Korean Society of Disaster and Security
    • /
    • v.13 no.4
    • /
    • pp.65-74
    • /
    • 2020
  • Continuous and accurate instrument of river water usage is needed for sustainable river water management. Although the instrument methods applicable to each point of use of river water are different, more precise direct instrument methods are required at the point of major open channel. Users of river water should select appropriate direct instrument methods to measure usage, but there is a lack of standards and verification research. In this study, the H-Q rating curve method, ultrasonic method, and microwave method were applied directly to the test basin in the upper basin of Mangyeong river, and the accuracy of measurement data was evaluated by comparing absolute error between discharge data calculated by instrument method. When comparing the calculated discharge of point units, the ultrasonic method showed the best results of the actual measurement. Through continuous instrument, the sum of the daily and monthly units was compared, and the ultrasonic and microwave methods were shown to be highly accurate. Based on the results of this study, it is hoped that the appropriate direct measurement method can be selected according to the importance of the river water use facility, considering that the ultrasonic method and the microwave method are relatively costly compared to the water level-flow relationship method.

Application of DNA Analysis for Identification of Prey Items on Zooplankton: Selective Treatment Method (기수역 요각류 위내용물 유전자 분석: 소화기관 내외부 유전자의 선택적 처리방법)

  • Chae, Yeon-Ji;Oh, Hye-Ji;Kim, Yong-Jae;Chang, Kwang-Hyeon;Jo, Hyunbin
    • Korean Journal of Ecology and Environment
    • /
    • v.54 no.3
    • /
    • pp.247-256
    • /
    • 2021
  • Understanding the selective feeding behavior of zooplankton on phytoplankton is essential for evaluating the nutrient cycle and energy flow in the food web. Although many studies have been conducted regarding the feeding behaviors of zooplankton through gut content analyses, there are limitations in the visual identification of digested contents using a microscope. DNA techniques have been applied to overcome these limitations since they can detect and amplify small amounts of prey DNA remaining in the gut contents. We designed a method to extract prey DNA from the gut contents of the whole body of the copepod specimen and tested the resolution of DNA identification for the prey phytoplankton. The common brackish species, Sinocalanus tenellus, were collected from Saemangeum Reservoir in different sites and seasons, and gut content DNA was extracted using 2.5% bleach treatment for 2 min for removal of potential contamination sources existing in preserved specimens without dissolution of the body. The sequences of the extracted gut contents were confirmed using BLASTn suite based on the NCBI database. The phytoplankton species detected in the gut showed temporal and spatial differences. Although DNA analysis of small copepod gut contents has been suggested as an effective method to examine the dynamics of primary prey sources at the genus or species level, uncertainties such as misidentification and limitations in the detailed information of the composition still exist.

Development of Noise and AI-based Pavement Condition Rating Evaluation System (소음도·인공지능 기반 포장상태등급 평가시스템 개발)

  • Han, Dae-Seok;Kim, Young-Rok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • This study developed low-cost and high-efficiency pavement condition monitoring technology to produce the key information required for pavement management. A noise and artificial intelligence-based monitoring system was devised to compensate for the shortcomings of existing high-end equipment that relies on visual information and high-end sensors. From idea establishment to system development, functional definition, information flow, architecture design, and finally, on-site field evaluations were carried out. As a result, confidence in the high level of artificial intelligence evaluation was secured. In addition, hardware and software elements and well-organized guidelines on system utilization were developed. The on-site evaluation process confirmed that non-experts could easily and quickly investigate and visualized the data. The evaluation results could support the management works of road managers. Furthermore, it could improve the completeness of the technologies, such as prior discriminating techniques for external conditions that are not considered in AI learning, system simplification, and variable speed response techniques. This paper presents a new paradigm for pavement monitoring technology that has lasted since the 1960s.

Reconfiguration of Physical Structure of Vegetation by Voxelization Based on 3D Point Clouds (3차원 포인트 클라우드 기반 복셀화에 의한 식생의 물리적 구조 재구현)

  • Ahn, Myeonghui;Jang, Eun-kyung;Bae, Inhyeok;Ji, Un
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.571-581
    • /
    • 2020
  • Vegetation affects water level change and flow resistance in rivers and impacts waterway ecosystems as a whole. Therefore, it is important to have accurate information about the species, shape, and size of any river vegetation. However, it is not easy to collect full vegetation data on-site, so recent studies have attempted to obtain large amounts of vegetation data using terrestrial laser scanning (TLS). Also, due to the complex shape of vegetation, it is not easy to obtain accurate information about the canopy area, and there are limitations due to a complex range of variables. Therefore, the physical structure of vegetation was analyzed in this study by reconfiguring high-resolution point cloud data collected through 3-dimensional terrestrial laser scanning (3D TLS) in a voxel. Each physical structure was analyzed under three different conditions: a simple vegetation formation without leaves, a complete formation with leaves, and a patch-scale vegetation formation. In the raw data, the outlier and unnecessary data were filtered and removed by Statistical Outlier Removal (SOR), resulting in 17%, 26%, and 25% of data being removed, respectively. Also, vegetation volume by voxel size was reconfigured from post-processed point clouds and compared with vegetation volume; the analysis showed that the margin of error was 8%, 25%, and 63% for each condition, respectively. The larger the size of the target sample, the larger the error. The vegetation surface looked visually similar when resizing the voxel; however, the volume of the entire vegetation was susceptible to error.

A study on the estimation and evaluation of ungauged reservoir inflow for local government's agricultural drought forecasting and warning (지자체 농업가뭄 예·경보를 위한 미계측 저수지의 유입량 추정 및 평가)

  • Choi, Jung-Ryel;Yoon, Hyeon-Cheol;Won, Chang-Hee;Lee, Byung-Hyun;Kim, Byung-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.6
    • /
    • pp.395-405
    • /
    • 2021
  • When issuing forecasts and alerts for agricultural drought, the relevant ministries only rely on the observation data from the reservoirs managed by the Korea Rural Community Corporation, which creates gaps between the drought analysis results at the local (si/gun) governments and the droughts actually experienced by local residents. Closing these gaps requires detailed local geoinformation on reservoirs, which in turn requires the information on reservoirs managed by local governments across Korea. However, installing water level and flow measurement equipment at all of the reservoirs would not be reasonable in terms of operation and cost effectiveness, and an alternate approach is required to efficiently generate information. In light of the above, this study validates and calibrates the parameters of the TANK model for reservoir basins, divided them into groups based on the characteristics of different basins, and applies the grouped parameters to unmeasured local government reservoirs to estimate and assess inflow. The findings show that the average determinant coefficient and the NSE of the group using rice paddies and inclinations are 0.63 and 0.62, respectively, indicating better results compared with the basin area and effective storage factors (determinant coefficient: 0.49, NSE: 0.47). The findings indicate the possibility of utilizing the information regarding unmeasured reservoirs managed by local governments.

Ref-1 protects against FeCl3-induced thrombosis and tissue factor expression via the GSK3β-NF-κB pathway

  • Lee, Ikjun;Nagar, Harsha;Kim, Seonhee;Choi, Su-jeong;Piao, Shuyu;Ahn, Moonsang;Jeon, Byeong Hwa;Oh, Sang-Ha;Kang, Shin Kwang;Kim, Cuk-Seong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.1
    • /
    • pp.59-68
    • /
    • 2021
  • Arterial thrombosis and its associated diseases are considered to constitute a major healthcare problem. Arterial thrombosis, defined as blood clot formation in an artery that interrupts blood circulation, is associated with many cardiovascular diseases. Oxidative stress is one of many important factors that aggravates the pathophysiological process of arterial thrombosis. Apurinic/apyrimidinic endonuclease 1/redox factor-1 (Ref-1) has a multifunctional role in cells that includes the regulation of oxidative stress and anti-inflammatory function. The aim of this study was to investigate the therapeutic effect of adenovirus-mediated Ref-1 overexpression on arterial thrombosis induced by 60% FeCl3 solution in rats. Blood flow was measured to detect the time to occlusion, thrombus formation was detected by hematoxylin and eosin staining, reactive oxygen species (ROS) levels were detected by high-performance liquid chromatography, and the expression of tissue factor and other proteins was detected by Western blot. FeCl3 aggravated thrombus formation in carotid arteries and reduced the time to artery occlusion. Ref-1 significantly delayed arterial obstruction via the inhibition of thrombus formation, especially by downregulating tissue factor expression through the Akt-GSK3β-NF-κB signaling pathway. Ref1 also reduced the expression of vascular inflammation markers ICAM-1 and VCAM-1, and reduced the level of ROS that contributed to thrombus formation. The results showed that adenovirus-mediated Ref-1 overexpression reduced thrombus formation in the rat carotid artery. In summary, Ref-1 overexpression had anti-thrombotic effects in a carotid artery thrombosis model and could be a target for the treatment of arterial thrombosis.