• Title/Summary/Keyword: flow learning

Search Result 759, Processing Time 0.037 seconds

Development of an integrated machine learning model for rheological behaviours and compressive strength prediction of self-compacting concrete incorporating environmental-friendly materials

  • Pouryan Hadi;KhodaBandehLou Ashkan;Hamidi Peyman;Ashrafzadeh Fedra
    • Structural Engineering and Mechanics
    • /
    • v.86 no.2
    • /
    • pp.181-195
    • /
    • 2023
  • To predict the rheological behaviours along with the compressive strength of self-compacting concrete that incorporates environmentally friendly ingredients as cement substitutes, a comparative evaluation of machine learning methods is conducted. To model four parameters, slump flow diameter, L-box ratio, V-funnel time, as well as compressive strength at 28 days-a complete mix design dataset from available pieces of literature is gathered and used to construct the suggested machine learning standards, SVM, MARS, and Mp5-MT. Six input variables-the amount of binder, the percentage of SCMs, the proportion of water to the binder, the amount of fine and coarse aggregates, and the amount of superplasticizer are grouped in a particular pattern. For optimizing the hyper-parameters of the MARS model with the lowest possible prediction error, a gravitational search algorithm (GSA) is required. In terms of the correlation coefficient for modelling slump flow diameter, L-box ratio, V-funnel duration, and compressive strength, the prediction results showed that MARS combined with GSA could improve the accuracy of the solo MARS model with 1.35%, 11.1%, 2.3%, as well as 1.07%. By contrast, Mp5-MT often demonstrates greater identification capability and more accurate prediction in comparison to MARS-GSA, and it may be regarded as an efficient approach to forecasting the rheological behaviors and compressive strength of SCC in infrastructure practice.

Machine learning application for predicting the strawberry harvesting time

  • Yang, Mi-Hye;Nam, Won-Ho;Kim, Taegon;Lee, Kwanho;Kim, Younghwa
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.2
    • /
    • pp.381-393
    • /
    • 2019
  • A smart farm is a system that combines information and communication technology (ICT), internet of things (IoT), and agricultural technology that enable a farm to operate with minimal labor and to automatically control of a greenhouse environment. Machine learning based on recently data-driven techniques has emerged with big data technologies and high-performance computing to create opportunities to quantify data intensive processes in agricultural operational environments. This paper presents research on the application of machine learning technology to diagnose the growth status of crops and predicting the harvest time of strawberries in a greenhouse according to image processing techniques. To classify the growth stages of the strawberries, we used object inference and detection with machine learning model based on deep learning neural networks and TensorFlow. The classification accuracy was compared based on the training data volume and training epoch. As a result, it was able to classify with an accuracy of over 90% with 200 training images and 8,000 training steps. The detection and classification of the strawberry maturities could be identified with an accuracy of over 90% at the mature and over mature stages of the strawberries. Concurrently, the experimental results are promising, and they show that this approach can be applied to develop a machine learning model for predicting the strawberry harvesting time and can be used to provide key decision support information to both farmers and policy makers about optimal harvest times and harvest planning.

A STUDY ON DESIGN OF AUTHORING SYSTEM IN COMPUTER ASSISTED INSTRUCTION (컴퓨터 보조수업을 위한 저작 시스템설계에 관한 연구)

  • Kho, Dae-Ghon;Park, Sang-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.468-472
    • /
    • 1989
  • In this paper a Korean authoring system is designed to write a CAI courseware in Hangul/English by an author who is a nonprogrammer. It saves nock time in authoring a courseware and maintains high level transplantity among CAI systems. By interfacing ah expert graphic utility, image information can be processed more easily and efficiently. Programming control of the flow of CAI courseware can be ramification and individual learning possible, fitting various demands of learners and learning and learning ability.

  • PDF

Machine Learning Model to Predict Osteoporotic Spine with Hounsfield Units on Lumbar Computed Tomography

  • Nam, Kyoung Hyup;Seo, Il;Kim, Dong Hwan;Lee, Jae Il;Choi, Byung Kwan;Han, In Ho
    • Journal of Korean Neurosurgical Society
    • /
    • v.62 no.4
    • /
    • pp.442-449
    • /
    • 2019
  • Objective : Bone mineral density (BMD) is an important consideration during fusion surgery. Although dual X-ray absorptiometry is considered as the gold standard for assessing BMD, quantitative computed tomography (QCT) provides more accurate data in spine osteoporosis. However, QCT has the disadvantage of additional radiation hazard and cost. The present study was to demonstrate the utility of artificial intelligence and machine learning algorithm for assessing osteoporosis using Hounsfield units (HU) of preoperative lumbar CT coupling with data of QCT. Methods : We reviewed 70 patients undergoing both QCT and conventional lumbar CT for spine surgery. The T-scores of 198 lumbar vertebra was assessed in QCT and the HU of vertebral body at the same level were measured in conventional CT by the picture archiving and communication system (PACS) system. A multiple regression algorithm was applied to predict the T-score using three independent variables (age, sex, and HU of vertebral body on conventional CT) coupling with T-score of QCT. Next, a logistic regression algorithm was applied to predict osteoporotic or non-osteoporotic vertebra. The Tensor flow and Python were used as the machine learning tools. The Tensor flow user interface developed in our institute was used for easy code generation. Results : The predictive model with multiple regression algorithm estimated similar T-scores with data of QCT. HU demonstrates the similar results as QCT without the discordance in only one non-osteoporotic vertebra that indicated osteoporosis. From the training set, the predictive model classified the lumbar vertebra into two groups (osteoporotic vs. non-osteoporotic spine) with 88.0% accuracy. In a test set of 40 vertebrae, classification accuracy was 92.5% when the learning rate was 0.0001 (precision, 0.939; recall, 0.969; F1 score, 0.954; area under the curve, 0.900). Conclusion : This study is a simple machine learning model applicable in the spine research field. The machine learning model can predict the T-score and osteoporotic vertebrae solely by measuring the HU of conventional CT, and this would help spine surgeons not to under-estimate the osteoporotic spine preoperatively. If applied to a bigger data set, we believe the predictive accuracy of our model will further increase. We propose that machine learning is an important modality of the medical research field.

A Systematic Review of Flipped Learning Research in Domestic Engineering Education (국내 공학교육에서의 플립러닝 연구에 대한 체계적 고찰)

  • Lee, Jiyeon
    • Journal of Engineering Education Research
    • /
    • v.24 no.3
    • /
    • pp.21-31
    • /
    • 2021
  • Flipped learning, which involves listening to lectures at home and performing dynamic group-based problem-solving activities in the classroom, is recently evaluated as a learner-centered teaching method, and interest and applications in engineering education are increasing. Therefore, this study aims to provide practical guidelines for successful application through empirical research analysis on the use of flipped learning in domestic engineering education. Through the selection criteria and keyword search, a systematic review of 36 articles was conducted. As a result of the analysis, flipped learning research in engineering education has increased sharply since 2016, focusing on academic journals and reporting its application cases and effects. Most of the research supported that flipped learning was effective not only for learners' learning activities(e.g., academic achievement, satisfaction, engagement, learning-flow, interaction), but also for individualized learning and securing sufficient practice time. It was often used in major classes with 15 to less than 50 students, especially in computer-related major courses. Most of them consisted of watching lecture videos, active learning activities, and lectures by instructors, and showed differences in management strategies for each class type. Based on the analysis results, suggestions for effective flipped learning management in future engineering education were presented.

Supervised learning-based DDoS attacks detection: Tuning hyperparameters

  • Kim, Meejoung
    • ETRI Journal
    • /
    • v.41 no.5
    • /
    • pp.560-573
    • /
    • 2019
  • Two supervised learning algorithms, a basic neural network and a long short-term memory recurrent neural network, are applied to traffic including DDoS attacks. The joint effects of preprocessing methods and hyperparameters for machine learning on performance are investigated. Values representing attack characteristics are extracted from datasets and preprocessed by two methods. Binary classification and two optimizers are used. Some hyperparameters are obtained exhaustively for fast and accurate detection, while others are fixed with constants to account for performance and data characteristics. An experiment is performed via TensorFlow on three traffic datasets. Three scenarios are considered to investigate the effects of learning former traffic on sequential traffic analysis and the effects of learning one dataset on application to another dataset, and determine whether the algorithms can be used for recent attack traffic. Experimental results show that the used preprocessing methods, neural network architectures and hyperparameters, and the optimizers are appropriate for DDoS attack detection. The obtained results provide a criterion for the detection accuracy of attacks.

CNN model transition learning comparative analysis based on deep learning for image classification (이미지 분류를 위한 딥러닝 기반 CNN모델 전이 학습 비교 분석)

  • Lee, Dong-jun;Jeon, Seung-Je;Lee, DongHwi
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.370-373
    • /
    • 2022
  • Recently, various deep learning framework models such as Tensorflow, Pytorch, Keras, etc. have appeared. In addition, CNN (Convolutional Neural Network) is applied to image recognition using frameworks such as Tensorflow, Pytorch, and Keras, and the optimization model in image classification is mainly used. In this paper, based on the results of training the CNN model with the Paitotchi and tensor flow frameworks most often used in the field of deep learning image recognition, the two frameworks are compared and analyzed for image analysis. Derived an optimized framework.

  • PDF

Effective Educational Use of Thinking Maps in Science Instruction (과학수업에서 Thinking Maps의 효과적인 활용 방안)

  • Park, Mi-Jin;Lee, Yong-Seob
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.3 no.1
    • /
    • pp.47-54
    • /
    • 2010
  • The purpose of this study is finding examine the Thinking Maps and how to use Thinking Maps effectively in Science Education. The result of this study were as follows: First, There are 8 type Maps, Circle Map, Tree Maps, Bubble Map, Double Bubble Map, Flow Map, Multi Flow Map, Brace Map, Bridge Map. Each Maps are useful in the following activities ; Circle Map-Express their thoughts. Tree Map-Activities as like determine the structure, classification, information organization. Bubble Maps-Construction. Double Bubble Map-Comparison of similarities and differences. Flow Map-Set goals, determine the result of changes in time or place. Multi Flow Map-Analysis cause and effect, expectation and reasoning. Brace Map-Analysis whole and part. Bridge Map-Activities need analogies. Second, each element of inquiry has 1~2 appropriate type of Thinking Maps. So student can choose the desired map. Third, the result of analysing of Science Curriculum Subjects, depending on the subject variety maps can be used. Therefore the Thinking Maps can be used for a variety on activities and subject. And student can be selected according to their learning style. So Thinking Maps are effective to improve student's Self-Directed Learning.

  • PDF

Traffic Classification Using Machine Learning Algorithms in Practical Network Monitoring Environments (실제 네트워크 모니터링 환경에서의 ML 알고리즘을 이용한 트래픽 분류)

  • Jung, Kwang-Bon;Choi, Mi-Jung;Kim, Myung-Sup;Won, Young-J.;Hong, James W.
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.8B
    • /
    • pp.707-718
    • /
    • 2008
  • The methodology of classifying traffics is changing from payload based or port based to machine learning based in order to overcome the dynamic changes of application's characteristics. However, current state of traffic classification using machine learning (ML) algorithms is ongoing under the offline environment. Specifically, most of the current works provide results of traffic classification using cross validation as a test method. Also, they show classification results based on traffic flows. However, these traffic classification results are not useful for practical environments of the network traffic monitoring. This paper compares the classification results using cross validation with those of using split validation as the test method. Also, this paper compares the classification results based on flow to those based on bytes. We classify network traffics by using various feature sets and machine learning algorithms such as J48, REPTree, RBFNetwork, Multilayer perceptron, BayesNet, and NaiveBayes. In this paper, we find the best feature sets and the best ML algorithm for classifying traffics using the split validation.

Effects of a New Clinical Training Simulator for Dental Radiography using Augmented Reality on Self-efficacy, Interest in Learning, Flow, and Practice Satisfaction (증강현실형 치과방사선촬영 시뮬레이터의 개발 및 효과검증 : 자아효능감, 학습흥미도, 학습몰입도, 실습만족도를 중심으로)

  • Gu, Ja-Young;Lee, Jae-Gi
    • Journal of Digital Contents Society
    • /
    • v.19 no.9
    • /
    • pp.1811-1817
    • /
    • 2018
  • The purpose of this study is to elucidate the effects of a new clinical training simulator for dental radiography using augmented reality (AR) on user learning context. To accomplish this purpose, we divided 217 dental hygiene students into two groups. The experimental group was presented with the new clinical training simulator for dental radiography using AR, and the control group was presented with task information using a textbook. The results showed that the experimental group presented the new clinical training simulator for dental radiography using AR had a higher level of self-efficacy, interest in learning, flow, and practice satisfaction compared with the control group shown the task information using a textbook. Therefore, the AR-based radiography simulator can be utilized in dental radiology practice education as an effective educational device.