
560  |  	﻿� ETRI Journal. 2019;41(5):560–573.wileyonlinelibrary.com/journal/etrij

1  |   INTRODUCTION

The evolution of networks and the development of smart mo-
bile devices have made it more convenient and easier than
ever to obtain information and interact with others. Such con-
venience, however, leads to new types of network security
problems that threaten our lives, such as personal informa-
tion leaks or even national security issues. Network security
consists of several factors, such as policies and practices ad-
opted to prevent and detect the behavior of malicious nodes.
Attack prevention and detection techniques in networks have
been studied steadily over the past two decades with vari-
ous approaches, such as stochastic modeling, decision the-
ory, and game theory [1‒4]. Recently, machine learning
(ML) techniques, such as multilayer perceptron (MLP), have

been applied to network attack detection [5‒23]. In addition,
as social media outlets, such as Facebook and Twitter, are
regarded as possible vehicles for the next large cybercrime
[24], research on the prediction of cyberattacks based on so-
cial media data has been studied [20].

Some attacks by malicious nodes prevent access to net-
work resources and cause serious threats and damage. For
instance, a Denial of Service (DoS) attack deprives legit-
imate end users of network resources, as malicious nodes
overwhelm the target system by transmitting extensively and
eventually paralyzing the system. There are several types
of DoS attacks such as TCP/SYN Flood, Ping Flood, UDP
Flood, and Distributed Denial of Service (DDoS) [25]. In a
DDoS attack, multiple compromised malicious nodes attack
a single target. In a typical DDoS attack, the attacker makes

Received: 27 March 2019  |  Revised: 28 June 2019  |  Accepted: 29 July 2019

DOI: 10.4218/etrij.2019-0156

S P E C I A L I S S U E

Supervised learning-based DDoS attacks detection: Tuning
hyperparameters

Meejoung Kim

This is an Open Access article distributed under the term of Korea Open Government License (KOGL) Type 4: Source Indication + Commercial Use Prohibition + Change
Prohibition (http://www.kogl.or.kr/info/licenseTypeEn.do).
1225-6463/$ © 2019 ETRI

Research Institute for Information and
Communication Technology, Korea
University, Seoul, Rep. of Korea

Correspondence
Meejoung Kim, Research Institute
for Information and Communication
Technology, Korea University, Seoul, Rep.
of Korea.
Email: meejkim@korea.ac.kr

Funding information
This research was supported by the
Mid‐career Research Program and
Basic Science Research Program
through NRF grant funded by the
MEST (NRF‐2019R1A2C1002706,
NRF‐2016R1D1A1B03931037) and
supported by the Korea University Grant.

Two supervised learning algorithms, a basic neural network and a long short‐term
memory recurrent neural network, are applied to traffic including DDoS attacks. The
joint effects of preprocessing methods and hyperparameters for machine learning
on performance are investigated. Values representing attack characteristics are ex-
tracted from datasets and preprocessed by two methods. Binary classification and
two optimizers are used. Some hyperparameters are obtained exhaustively for fast
and accurate detection, while others are fixed with constants to account for perfor-
mance and data characteristics. An experiment is performed via TensorFlow on three
traffic datasets. Three scenarios are considered to investigate the effects of learning
former traffic on sequential traffic analysis and the effects of learning one dataset on
application to another dataset, and determine whether the algorithms can be used for
recent attack traffic. Experimental results show that the used preprocessing methods,
neural network architectures and hyperparameters, and the optimizers are appropri-
ate for DDoS attack detection. The obtained results provide a criterion for the detec-
tion accuracy of attacks.

K E Y W O R D S
accuracy of detection, DDoS attack, long short‐term memory, machine learning, tensorflow

www.wileyonlinelibrary.com/journal/etrij
mailto:﻿￼
https://orcid.org/0000-0002-8081-0489
http://www.kogl.or.kr/info/licenseTypeEn.do
mailto:meejkim@korea.ac.kr

     |  561KIM

a DDoS master (botmaster), using the vulnerability in one
computer system. The botmaster then identifies vulnerable
systems and infects them with malware. Eventually, it in-
structs the infected or controlled computers (zombie army or
botnet) to launch an attack against a specified target. A Smurf
attack is an example of a DDoS attack. In the attack, large
numbers of Internet Control Message Protocol (ICMP) echo
request packets are broadcasted to a network using an IP ad-
dress that is a spoofed source IP of the intended victim. The
nodes associated with the network respond to this request by
sending replies to the IP address of the victim. Consequently,
the victim computer is flooded with traffic [25].

There are various ways to prevent and detect DDoS at-
tacks, such as the trace back scheme and traffic filtering au-
tonomous system [26‒29]. The trace back scheme finds the
locations of sources for attacks, whereas a traffic filtering au-
tonomous system uses a traffic filter to drop traffic that does
not originate from the network or is destined to the network.
Another method is traffic aggregation with traffic classifica-
tion. Signature‐based detection and anomaly‐based detection
are the two different approaches for this method. The former
monitors packets on a specified network and compares the
packets with a set of signatures from known malicious threats
[30], whereas the latter depends on the network behavior as
the system distinguishes attack data from traffic data based
on a training process. The output obtained by the training
process can be updated when new data are added while pre-
serving the previously acquired knowledge. ML techniques
belong to this category.

Considerable research has recently been conducted on the
prevention and detection of cyberattacks, including DoS and
DDoS attacks [5‒35], especially in cloud computing environ-
ments [16,17], [25], [32‒34] and software defined network-
ing (SDN) architecture [17‒19], [32]. Several ML techniques
([5,6], [8‒22]) and the autoregressive integrated moving av-
erage (ARIMA) time series model [31] were considered for
the detection of DoS attacks including DDoS. In addition,
[20] used social media data to predict attacks, whereas [35]
developed DDoS Testbed (DDoSTB) to generate a variety
of attack scenarios. Many studies using ML techniques in
detecting attacks have mainly applied different ML feature
extraction algorithms or modified algorithms to improve per-
formance. Details of recent studies are presented in the fol-
lowing section.

There are several hyperparameters associated with ML
techniques. Hyperparameters are the parameters that control
the learning process. They are the higher level concepts of
ML techniques, represented as variables, which determine
the complexity of network structure and the ability to learn.
For instance, the numbers of hidden units and layers, and the
learning rate are examples of hyperparameters. Because ap-
propriately chosen values of hyperparameters may resolve
overfitting and underfitting problems and reduce training

time and costs that lead to performance improvement, hyper-
parameter tuning is a critical step in the training process of
an ML model [36]. Recently, these issues have been studied
[37,38]. In addition, preprocessing of data is also an import-
ant step in the ML technique because it derives useful infor-
mation from raw data and transforms the derived information
into a format that increases the learning ability of the model
[39].

In this study, we analyze DDoS attacks by ML tech-
niques. Datasets derived from three different sources of traf-
fic including DDoS attacks are used for training and testing
after preprocessing by proper transformation. In the training
process, two supervised learning algorithms, a basic neural
network (BNN) and a long short‐term memory recurrent
neural network (LSTM RNN), are considered. ML is per-
formed via TensorFlow. The motivation of this study is as
follows: (a) How do the different preprocessing methods and
various values of hyperparameters affect the performance of
the ML techniques? (b) What are the suboptimal values of
hyperparameters that enable quick and accurate detection for
feature extraction algorithms? (c) Do learning former traf-
fic and learning one dataset affect the learning of sequential
traffic and another dataset, respectively, in a DDoS attack?
(d) Are the ML algorithms suitable for detecting attacks on
older data applicable for detecting attacks on recent data?
Based on this motivation, two preprocessing methods, three
training scenarios, and several different environments are
considered. Different environments are represented by var-
ious hyperparameters, such as different optimizers and net-
work architectures in the experiment. The learning rates and
iteration numbers are obtained by exhaustive search based
on the grid search method [36] in such a way as to rapidly
decrease the cost function for BNN, and one of the deter-
mined learning rates is used in LSTM RNN. Other hyperpa-
rameters, including the numbers of layers and hidden nodes,
are fixed with constants. The constants are determined by
considering the detection accuracy and observed character-
istics of data during the experiment. Feature extraction al-
gorithms are applied to recent traffic, including attacks, to
determine whether they are applicable to new attack charac-
teristics. There are several studies that have considered the
optimal hyperparameters in an ML model, including [37].
To the best of our knowledge, however, this is the first at-
tempt to investigate the joint effect of preprocessing methods
and hyperparameters on the performance of DDoS attack de-
tection using ML techniques. The contribution of this study
is as follows: (a) The joint effect of preprocessing methods
and hyperparameters on the performance of ML techniques
is investigated. (b) The effect of learning former traffic on
the analysis of sequential traffic and the effect of learning
one dataset on application to another dataset are studied. (c)
The applicability of existing ML technologies to detect at-
tacks with new attack characteristics is investigated. (d) Two

562  |     KIM

optimizers commonly used in ML models are compared for
DDoS detection using TensorFlow.

This paper includes the following: Section 2 presents ex-
isting studies of detection of cyberattacks including DDoS
attacks; Section 3 describes the ML process; Section 4 and
Section 5 present performance measures and the exper-
imental results, respectively; and Section 6 provides the
conclusion.

2  |   RELATED WORKS:
DETECTION OF CYBERATTACKS
INCLUDING DDOS

There are many studies addressing the prevention and de-
tection of cyberattacks including DDoS attacks [5‒35] and
many of them are based on ML techniques [5‒16], [18‒23].
Examples of techniques are decision trees [5], [16]; support
vector machine (SVM) [6], [16]; two‐level hybrid solution
consisting of anomaly and misuse detection [7]; classifica-
tion techniques such as MLP, Naïve Bayes, and random for-
est (RF) [8], [16]; K‐mean clustering algorithms [9], [16];
genetic algorithm (GA) [10]; ensemble of neuro‐fuzzy and
genetic fuzzy systems [11]; Lyapunov exponent based on en-
tropy [12], [31]; convolutional neural network (CNN) [14],
[20]; RNN [14]; LSTM RNN [14], [18‒20]; gated recurrent
unit (GRU) RNN [14]; hybrid heterogeneous multi‐classi-
fier ensemble learning [22]; and deep‐feature extraction and
selection method [23]. Details of the existing studies are as
follows.

A DDoS attacks detection system designed based on deci-
sion tree and traffic‐flow pattern‐matching was used to trace
back the locations of attackers [5]. The study of [6] focused
on the generation and detection of DDoS attack data by using
enhanced SVM. A two‐level hybrid approach consisting of
two anomaly detection components and one misuse detection
component was considered [7]. A new dataset containing
modern DDoS attacks, such as SIDDoS and HTTP Flood, was
collected in different network layers, and MLP, Naïve Bayes,
and RF were applied to classify them [8]. An experiment was
conducted to observe the discriminating capabilities of hier-
archical and K‐mean clustering algorithms for botnet trace in
the presence of background internet traffic [9]. A GA based
approach [10] and adaptive and hybrid neuro‐fuzzy systems
as subsystems of an ensemble [11] were considered in DoS
and DDoS detection. A variation of the Lyapunov exponent
was proposed to detect anomalies in network traffic based on
entropy [12].

Several deep learning (DL) models, such as CNN,
RNN, LSTM, and GRU neural network (NN) [14], and
the PCA RNN framework [15] were considered to iden-
tify DDoS attacks. The performances of SVM, decision
tree, Naïve Bayes, RF, K‐means, and Gaussian‐mixture

model were compared [16] in terms of expectation‐maxi-
mization. A defense mechanism mitigating DDoS attacks
applicable to the fog environment as well as the cloud
environment was considered [18], whereas a DDoS de-
tection model and defense system based on LSTM was
proposed for SDNs [19]. Classifiers based on CNN and
LSTM were presented to predict the likelihood of cyber-
attack‐related words in large volumes of social network-
ing texts [20]. Hybrid heterogeneous multi‐classifier
ensemble learning and a heuristic detection algorithm
were proposed to construct a detection system [22]. The
combination of stacked feature extraction and weighted
feature selection was proposed for the detection of an im-
personating Wi‐Fi network [23]. A real‐time DDoS at-
tack detection method using a correlation measure was
proposed [26], whereas a mechanism to detect botnets
using their fundamental characteristics, such as group
activity, was considered [27]. Probabilistic and deter-
ministic packet marking techniques to detect DDoS at-
tacks [28] and a highly distributed DDoS attack blocking
mechanism [29] were proposed. A signature detection
technique was proposed to investigate the ability of var-
ious routing protocols that facilitate intrusion detection
when the attack signatures are completely known [30].
Furthermore, a time series based on the number of pack-
ets in DDoS attack traffic was considered; meanwhile, the
ARIMA model was used for prediction, and the chaotic
behavior of prediction error was considered by using the
Lyapunov exponent [31]. An experiment of a real‐time
DDoS attack was conducted to study attack absorption
and mitigation for various target services in the pres-
ence of dynamic cloud resource scaling [33]. The impact
of DDoS attacks on web services was measured using
several metrics such as throughput, average latency, and
round‐trip time [35]. Many studies that focused on pas-
sive defenses have analyzed the traffic on the destination
side after attack occurred, while [16] and [18] considered
it on the source side.

In addition, there are several survey papers dealing
with DDoS attacks. The evaluation and ranking of several
supervised ML algorithms were discussed with the aim of
increasing precision and recall while maintaining detection
accuracy and reducing type I and type II errors [13]. Different
scenarios of DDoS attacks were surveyed [17], focusing on
different methods of classification, detection, and defense of
DDoS attack, and the eligibility of ML approach to DDoS
attack defense was evaluated. A systematic review of ML
techniques [21] and defense methods [25] for DoS attack de-
tection were provided. Defense mechanisms against DDoS
attacks in cloud computing environments using SDNs were
also provided [32]. Furthermore, the main features of exist-
ing DDoS mitigation strategies and their functionalities were
discussed [34].

     |  563KIM

3  |   PROCESS OF MACHINE
LEARNING

3.1  |  Architecture of neural network
Artificial neural networks consist of three parts: input layer,
hidden layer, and output layer. A dataset is fed into the input
layer and preprocessed for efficient learning. The learning
process of the training set occurs in the hidden layer. During
the learning process, the features of training data are extracted
and saved as “learning parameters,” which are presented as
weight matrices W and biases b. In the output layer, tests are
performed using these matrices to verify the results of learn-
ing. Figure 1 illustrates the general ML process.

In this study, we consider two neural networks: a BNN and a
LSTM RNN. BNN is a model using a basic logistic regression
classifier, whereas LSTM RNN is a model using LSTM cells in
hidden layers. LSTM RNN is a network model that considers
the vanishing gradient problem of RNN, which is an NN deal-
ing with time series. A LSTM cell is illustrated in Figure 2.

The objective of an ML process is to detect attacks from
a traffic set with high accuracy as fast as possible. In general,
the accuracy becomes high if the cost becomes small, and a
smaller number of iterations (epochs, eps) of learning enable
faster detection. As the cost is represented as a function of
learning parameters W and b, the objective function of ML
can be formulated as follows:

In the (Objective), C is a cost function, and k is the number
of iterations. The notations in (Objective) will be explained in
Algorithm 1, which is a description of BNN.

3.2  |  Preprocessing of datasets
A dataset has to be preprocessed for efficient learning. To
determine the preprocessing methods, traffic characteristics,
such as distributions of transmitted packets and accumulated
packets in a unit time interval, have to be investigated.

In this study, three datasets are used for ML processing: “DDoS
Attack 2007” obtained from CAIDA (Center for Applied Internet
Data Analysis) [40], “DDoS attack 1998” of DARPA (Defense
Advanced Research Projects Agency) obtained from MIT Lab
[41], and “recent DDoS attacks dataset” obtained from [42]. The
third dataset was collected in 2016 by the authors of [8]. It contains
four types of recent DDoS attacks—HTTP Flood, SQL Injection
Distributed Denial of Service (SIDDOS), UDP Flood, and Smurf.

The Wireshark, a traffic analyzer, is used to examine traf-
fic characteristics. The dataset from CAIDA contains packets
transmitted “from attackers to a victim (to victim)” and “from
a victim to attackers (from victim)” separately. Figure 3 shows
the number of packets transmitted “from victim” and “to vic-
tim” over the course of 5 minutes when the DDoS attack be-
gins for CAIDA. It shows that the transmitted packets “from
victim” and “to victim” are maximally below 800 bytes and
above 150 000 bytes, respectively, for 1 second. As seen from
Figure 3, there are large differences between the number of
packets occurring in the normal state (before 80 seconds) and
that in the attack state (after 80 seconds). That is, the distribu-
tions of transmitted packets in the successive time intervals of
these two states are far from normal. To deal with such data,
preprocessing of the dataset is necessary for efficient training.

The Box‐Cox transformation (BCT) and min‐max transforma-
tion (MMT) are well known preprocessing methods of datasets.

(Objective) min
k

{
min
W,b

C(W(k),b(k))

}
.

F I G U R E 1   Machine learning process

Input layer Output layerHidden layer

Read
dataset

Test with
matrices

Learning
process

F I G U R E 2   Learning process of LSTM
F I G U R E 3   Number of packets transmitted in 5 min: (A) from
victim (B) to victim

800

(A)

(B)

700
600
500
400
300
200
100

0

ces
1/stekcaP

0 40 80 120 160 200 240 280
Time (s)

All Packets
TCP errors

150,000

120,000

90,000

60,000

30,000

0

ces
1/stekcaP

0 40 80 120 160 200 240 280
Time (s)

All Packets
TCP errors

564  |     KIM

BCT converts a dataset that is not normally distributed into a rather
normally distributed dataset [43], whereas MMT is a commonly
used method in ML, taking values of [0, 1]. These are defined by

 and

 respectively, where λ is power parameter and x= (x1, … , xn).

3.3  |  Learning and testing process
In the following algorithm, supervised learning is considered
with the logistic classification, and training is implemented
using the back‐propagation algorithm.

Let {Xj}
N
j=1

 and {yj}
N
j=1

 be the preprocessed dataset and corre-
sponding label set, respectively¸ where N is the number of data
elements. For the label, binary classification is applied. That is,
zero or one is assigned to yj,∙ depending on the traffic state—nor-
mal or attack. Divide {Xj}

N
j=1

 and {yj}
N
j=1

 into a training (testing)
set {Xj,tr}

N1

j=1
 ({Xj,te}

N2

j=1
) and corresponding label set {yj,tr}

N1

j=1

({yj,te}
N2

j=1
), respectively, where Ni, i = 1, 2, are the numbers of

training and testing data elements satisfying N1+N2 =N. Each
data Xj,∙ is a vector given by Xj,∙ = (x1,j, … , xm,j)∙, where each
component xi,j is a value representing the characteristic of traffic,
∙ is either “tr” or “te,” and m is an input dimension. The process
of BNN is as follows:

In step 3, the initial values of weights and biases are given
by W(1)

p
 and b(1)

p
, and l is the number of hidden layers. Step 4

consists of training and verifying processes. In 4.1, the train-
ing process, the following linear regression L and sigmoid
function S are used:

 and

In the algorithm, W(i)
p

 and b(i)
p

, the i‐th updated values
of W(1)

p
 and b(1)

p
, are determined during the training process

in such a way as to minimize the cost function. Note that
S(L(Xj,tr))

(i)
p

 is the calculated value of yj by training Xj,tr in the
p‐th layer and i‐th iteration.

The cost function is defined as follows:

In (3), C(S(x), y) is the negative log cost function defined
by

By substituting (4) into (3), the average cost function
computed after the i‐th learning can be written as

Equation (5) evaluates the closeness of yj,tr and S(L(Xj,tr))
(i)
p

,
which equals the Kullback‐Leibler (KL) divergence between
them. If the gradient decent (GD) algorithm is used,W(i)

p
 and

b(i)
p

 are updated by

and

where n is the output dimension and � is the learning rate. The
GD algorithm in this step can be replaced by modified algo-
rithms, such as the adaptive moment estimation (Adam: AD)
[44]. In 4.2, the verifying process, {Xj,tr}

N1

j=1
 is tested for each

training step by using W(i)
p

 and b(i)
p

 obtained in 4.1, and the accu-
racy for the training data is computed in each iteration. We call
the accuracy for the training data “training accuracy” and

BCT(xi)=

{
(x�

i
−1)∕�, �≠0,

log (xi), �=0,

(1)MMT(xi)=
xi−min (x)

max (x)−min (x)
,

L(Xj,tr)
(i)
p
=XjW

(i)
p
+b(i)

p

(2)S{L(Xj,tr)}
(i)
p
=

1

1+e−L(Xj,tr)
(i)
p

, p=1, … , l.

(3)C(W
(i)

l
, b

(i)

l
)=

1

N1

N1∑

j=1

C(S(L(Xj,tr))
(i)

l
, yj,tr).

(4)C(S(x), y)=

{
− log (S(x)), y=1,

− log (1−S(x)), y=0.

(5)C(W
(i)

l
, b

(i)

l
)=

1

N1

N1∑

j=1

[
yj,tr log S(L(Xj,tr))

(i)

l

+(1−yj,tr) log (1−S(L(Xj,tr))
(i)

l
)

]
.

W
(i)

j,p
←W

(i−1)

j,p
−��C(W

(i−1)

l
, b

(i−1)

l
)∕�Wj,p, j=1, … , m,

(6)b
(i)

j,p
←b

(i−1)

j,p
−��C(W

(i−1)

l
, b

(i−1)

l
)∕�bj,p, j=1, … , n,

Algorithm 1 Process of Machine Learning (BNN)
1: Read a dataset and pre-process the dataset: 1{ }N

j j=X and 1{ } .N
j jy =

2: Divide the pre-processed dataset 1{ }N
j j=X and corresponding

label set 1{ }N
j jy = into a training set and testing set:

1 2
1 ,tr 1 ,te 1{ } {{ } ,{ } }N NN

j j j j j j= = ==X X X and 1 2
1 ,tr 1 ,te 1{ } {{ } , { } }.N NN

j j j j j jy y y= = ==

3: Initialize variables: weight (1)
pW and bias (1) , 1, , .p p l=b �

4: Training and verifying processes: for 1:i k=

4.1 Training: Compute
() ()

,tr()()
, tr(()) 1 / {1 },

i i
j p pi

j pS L e− += + X W bX

11, , ,j N= � 1, , .p l= �

Compute the cost function () () ()(,).i i i
l lC C≡ W b

Train by using gradient decent optimizer (or Adam
optimizer) to minimize the cost function by updating

()i
pW and () ,i

pb 1, , .p l= �

4.2 Verifying: Compute the accuracy of 1
,tr 1{ }N

j jy = by using the

obtained ()i
pW and ()i

pb for each .i

5: Testing process: Applying ()k
pW and ()k

pb to 2
,te 1{ } ,N

j j =X predict
2

,te,pred 1{ } .N
j jy = Compare 2

,te,pred 1{ }N
j jy = and 2

,te 1{ } .N
j jy =

6: End

     |  565KIM

denote it by “Acctr.” Acctr is computed by using yj,tr,pred, the pre-
diction of yj,tr, which is determined as follows:

The iteration number of training, k, is determined in this
step in such a way as to obtain a high Acctr. Now, using the
matrices W(k)

p
 and b(k)

p
, {Xj,te}

N2

j=1
 is tested in step 5. S(L(Xj,te))

(k)

l

is computed and this determines yj,te,pred, the prediction of
yj,te, for the testing set according to (7). We call the accuracy
of the testing set “testing accuracy” and denote it by “Accte.”

For LSTM RNN, the functions of gates in Figure 2 are
given by

where ⊗ and ⊕ represent entry‐wise multiplication
(Hadamard product) and entry‐wise addition (direct sum),
respectively. The subscripts of the matrices in (8) only denote
the gates. The notations describing the layer and iteration
number are deleted in the matrices for notational simplicity.
The detailed explanation of LSTM and the explicit formulas
of the functions in (8) can be found in several articles includ-
ing [45]. Table 1 summarizes the notations used in this paper.

4  |   PERFORMANCE MEASURES

The two accuracies, Acctr and Accte, true positive rate (TPR,
recall), positive predictive value (PPV, precision), F1 score,

and accuracy score are considered as the performance meas-
ures. They are defined by

where TP, FP, TN, and FN are true positive, false positive, true
negative, and false negative, respectively. Here, attack is posi-
tive class and normal is negative class. In addition, the execu-
tion times for training and testing, Ttr and Tte, are considered.

5  |   EXPERIMENTAL RESULTS

In this section, the experimental results are presented. The ex-
periment is performed by using Python 3.6 and TensorFlow
v.1.7.0 on Intel Core i7, 16 GB RAM. The datasets of CAIDA
and DARPA contain approximately 2 hours of traffic of
size 23.5 GB, consisting of attack traffic and normal traf-
fic. Specifically, the CAIDA dataset covers from 20:50:08
UTC (Coordinated Universal Time) to 21:56:16 UTC (actual
date and time: 20070804, 13:49:36–14:54:36) and DARPA
1998 covers 19980629, 20:57:14–19980630, 04:59:14. The
attacks in CAIDA are identified at approximately 21:13 UTC
with the rapid increase in network load within a few minutes,
from approximately 200 Kbits/sec to approximately 90 MB/
sec, whereas the attacks in DARPA are identified at approxi-
mately 04:33 with the increase in network load from approxi-
mately 20 Kbits/sec to approximately 11 MB/sec. The dataset
is divided into 10‐s periods; consequently, 707 small subsets
(CAIDA: 396, DARPA: 311) are obtained. Normal and at-
tack traffic are mixed in each dataset, and labels are assigned
to distinguish them. Then, the CAIDA (DARPA) dataset is
divided into 158 (156) and 238 (155) small sets of normal
traffic and attack traffic, respectively. Meanwhile, 300 sets
of normal traffic and 300 of UDP Flood attack are extracted
from the third dataset to confirm the applicability of the ML
algorithms to recent attack traffic.

The datasets are analyzed to determine the components
of traffic that enable the representation of attack character-
istics. Figure 4 shows the information provided by CAIDA
dataset. As the “to victim” dataset is divided into 10‐s pe-
riods, Figure 4 is obtained by capturing the last few lines of
two sets among 396 small subsets. As shown, it contains the
number of transmissions, transmission times, source/destina-
tion addresses, and number of cumulated packets (in bytes) in

(7)yj,tr,pred =

{
0, S(L(Xj,tr))

(i)

l
<0.5,

1, S(L(Xj,tr))
(i)

l
≥0.5,

j=1, … , N1.

(8)
ft =S(Wf ⋅ [ht−1,Xt]+bf), it =S(Wi ⋅ [ht−1,Xt]+bi),

�Ct = tanh (WC ⋅ [ht−1,Xt]+bC), ot =S(Wo ⋅ [ht−1,Xt]+bo),

Ct = ft ⊗Ct−1⊕ it ⊗
�Ct, and ht =ot ⊗ tanh (Ct),

(9)Acctr =
1

N1

N1∑

j=1

(yj,tr−yj,tr,pred), Accte =
1

N2

N2∑

j=1

(yj,te−yj,te,pred),

(10)
TPR = TP∕(TP + FN), PPV = TP∕(TP + FP),

F1 score=2(PPV × TPR)∕(PPV + TPR),

and Accuracy score = (TP + TN)∕(TP + TN + FP + FN),

T A B L E 1   Summary of notations

Notation Description

Xj (Xj,tr, Xj, te) j‐th input data (training, testing)

yj (yj,tr, yj,te) Label corresponding to Xj (Xj,tr, Xj, te)

� Power parameter

m Dimension of input data

n Dimension of output data

A
(i) i‐th updated value of a vector initially

given by A(1)

N (N1, N2) Number of data elements (training,
testing)

� Learning rate

l Number of hidden layers

k Number of iterated learning

566  |     KIM

(a) normal state and (b) attack state. According to the figure,
the accumulated packets transmitted to a victim are 222 012
bytes and 78 927 330 bytes in normal and attack states, re-
spectively. A similar trend can be found in the “from victim”
dataset in CAIDA and DARPA traffic. Based on the anal-
ysis of datasets, three values that could be the evidence of
attack occurrence are extracted from the three datasets (ie,
m = 3), which are the number of source IP addresses, number
of transmitted packets by IPs, and number of accumulated
packets for CAIDA and DARPA. However, because recent
traffic provides different traffic information, different com-
ponents are selected from the third dataset: the number of
bytes, packet delay for node, and packet delay. Detailed ex-
planation of the values can be found in [8]. Figure 5 shows a
portion of the three values extracted from the CAIDA dataset,
which is used in ML.

We consider three scenarios depending on the datasets
used for training and testing: I. The datasets of CAIDA and
DARPA are mixed and then divided into training and test-
ing sets. II. CAIDA is used for training, whereas DARPA is
used for testing. III. Recent dataset is divided into training
and testing sets.

The data are not shuffled for BNN, while shuffled and
unshuffled data are used in LSTM. The purpose of consid-
ering scenarios I and II in BNN is to investigate the effects
of learning former traffic on the analysis of sequential traf-
fic and the effects of learning one dataset on application to
another dataset, respectively. The ratio of training and testing
sets may affect detection accuracy. During the experiment, we
observed that using 80% of dataset for training seems relevant.
Therefore, in the following figures for BNN and LSTM (no
shuffle), for each dataset, the first 80% and the subsequent
20% of normal and attack traffic are used for training and test-
ing, respectively. Meanwhile, 80% and 20% of total dataset are
used for training and testing, respectively, for LSTM (shuffle).

For both learning algorithms, BCT with �=0 and MMT are ap-
plied for the extracted values from datasets, as shown in Figure 5.
Then, the preprocessed data {Xj}

N
j=1

 and corresponding label yj of
Xj are obtained. W(1)

∗
 and b(1)

∗
 are given by random normal, initially,

for all *. As binary classification is considered, “tf.sigmoid” and
“sigmoid_cross_entropy _with_logits” are used for BNN and
LSTM, respectively, which correspond to (2), and “tf.reduce_mean”
is used for (3). Two optimizers, gradient decent algorithm and
Adam, are used. In addition, SVM with radial basis function (RBF)
kernel is executed to compare the performance. In the following ta-
bles, B and M are used instead of BCT and MMT, and S and PM are
used instead for scenario and performance measure, for simplicity.

5.1  |  BNN
Two values of l, 1 and 2, are considered to investigate the effect
of the number of layers in the hidden layer for BNN, denoted as
Layer1 and Layer2, respectively. It is observed that more lay-
ers do not provide performance improvement, whereas they re-
quire more training time. This seems to be because the range of

F I G U R E 4   Information about packet transmission to victim: (A) not attack (B) attack

F I G U R E 5   A portion of the values used for ML: (A) Normal
state (B) Attack state

     |  567KIM

values used, such as the number of accumulated packets, clearly
distinguishes the normal state and the attack state. Therefore,
we considered only two layers. Learning rates of 10–2 and 10–1
are used for Layer1 and Layer2, respectively, for any optimizer.
Iteration numbers vary depending on the environment. The
learning rates and iteration numbers are determined by exhaus-
tive grid search to decrease the cost function rapidly and ac-
cording to the convergence rates of learning, respectively.

Henceforth, the training environments are distinguished as
[scenario, layer, algorithm, preprocessing method], for example,
[I, Layer1, GD, BCT]. From the numerical results, the following
is observed for scenarios I–II; i) GD (AD) is better than AD (GD)
for Layer1 (Layer2) in terms of cost function if the same iteration
numbers are used. ii) BCT is better than MMT in terms of accu-
racies. iii) BCT is better than MMT for Layer1, whereas MMT is
better than BCT for Layer2 in terms of training time with similar
accuracies. Table 2 presents Acctr, Accte, Ttr, and Tte for different
environments. It shows that the accuracies of scenarios I–II are
higher than those of scenario III. Since MMT has values in the
interval [0, 1], the differences between preprocessed data values
for MMT are smaller than those for BCT. MMT may require
more training time, as shown in Layer1, whereas MMT requires
less training time in Layer2 with GD. The results for scenario III
show that this method is applicable to recent traffic, and MMT is
better than BCT in general for the measures, owing to the time it
takes BCT to capture the characteristics of the traffic. This is be-
cause the number of bytes is relatively large compared with
packet delay for node and packet delay. Table 3 compares two
measures, TPR and PPV, for BNN and LSTM (no shuffle).

According to the table, BCT is better than MMT for any layer and
algorithm in scenarios I–II, whereas MMT seems better in many
cases for scenario III, when BNN is applied. Even though TPRs
are the same in different environments, the predicted values com-
puted using the obtained W and b are different for each scenario.
Figure 6 shows S(L(Xj,te))

(20)

1
 using the obtained learning param-

eters and the corresponding yj,te,pred of 50 sets of normal traffic
and 50 sets of attack traffic from the testing set for [I–II, Layer1,
GD, BCT]. It shows that the two scenarios have the same
{yj,te,pred}

100
j=1

, but different {S(L(Xj,te))
(20)

1
}100

j=1
 values. That is,

even though the TPRs are the same for the two scenarios, scenario
I detects attack more accurately than scenario II does. The ob-
tained learning parameters that are used for the calculation of
S(L(Xj,te))

(20)

1
 for scenarios I–II are as follows:

and

where “T” represents the transpose of a matrix.
Figures 7 and 8 compare the cost, training accuracy, and

test accuracy of [I–III, Layer1, GD/AD, BCT] and [I–II,
Layer2, AD, BCT/MMT], respectively, for varying iter-
ations. According to Figure 7, the cost for GD converges
rapidly during the first two iterations and approximates zero
when four iterations are performed. However, that for AD

W
(20)

1
= [0.9753,0.8679,]T, b

(20)

1
=[0.4714] for I

(11)
W

(20)

1
= [0.9390,0.8762,−0.9756]T,

b
(20)

1
=[0.4696] for II,

T A B L E 2   Results for different environments: Accuracies (probability), training and testing times (time unit: second)

Layer Layer1 Layer2

Optimizer GD AD GD AD

PM B M B M B M B M

Scenarios I

Acctr 1.000 0.970 1.000 0.990 1.000 0.990 1.000 0.990

Accte 1.000 0.970 1.000 0.990 1.000 0.990 1.000 0.990

Ttr 0.211 2.849 0.257 1.697 3.246 0.775 0.359 0.364

Tte 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Scenarios II

Acctr 1.000 0.980 1.000 0.980 1.000 0.990 1.000 0.990

Accte 1.000 0.840 1.000 0.850 1.000 0.910 1.000 0.910

Ttr 0.207 8.169 0.268 0.753 27.320 0.775 0.397 0.332

Tte 0.001 0.003 0.001 0.001 0.001 0.001 0.001 0.001

Scenarios III

Acctr 0.800 0.930 0.930 0.930 0.710 0.940 0.930 0.940

Accte 0.810 0.950 0.960 0.960 0.770 0.970 0.960 0.970

Ttr 3.019 1.187 2.341 2.822 3.641 2.682 3.581 2.858

Tte 0.007 0.007 0.005 0.005 0.007 0.007 0.006 0.007

568  |     KIM

converges slowly and approximates zero when more than
20 iterations are performed. As costs decrease, the training
accuracies for GD converge fast to one while those for AD
require more iterations to achieve the same accuracies. For
[I–II, Layer2, AD, BCT/MMT], even though BCT is better
than MMT in terms of measures, as seen in Tables 2 and
3, costs for MMT are less than those for BCT, as shown in
Figure 7. This is because of the different ranges of prepro-
cessed datasets.

5.2  |  LSTM RNN
The number of layers, number of hidden nodes, and epochs
are fixed as constants to investigate their effect on per-
formance. Although the constants are not optimal values,
those are determined by considering the detection accuracy
and observed characteristics of the data during the experi-
ment. To conduct this evaluation, 1 and 10 hidden nodes
are considered in one layer and denoted as H1 and H2, re-
spectively, 10 and 60 epochs are used for all environments,

respectively, and the BNN value of 10−2 is used as the
learning rate.

T A B L E 3   Results for different environments: TPR, PPV (probability)

Algorithm BNN

Layer Layer1 Layer2

Optimizer GD AD GD AD

PM B M B M B M B M

Scenario I

TPR 1.000 0.988 1.000 0.988 1.000 1.000 1.000 0.988

PPV 1.000 0.975 1.000 1.000 1.000 0.852 1.000 1.000

Scenario II

TPR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

PPV 1.000 0.756 1.000 0.767 1.000 0.852 1.000 0.847

Scenario III

TPR 0.960 0.940 0.940 0.960 1.000 0.940 0.940 0.940

PPV 0.738 0.903 0.979 0.738 0.505 0.959 0.958 0.959

Algorithm LSTM (no shuffle, epochs = 60)

Layer H1 H2

Optimizer GD AD GD AD

PM B M B M B M B M

Scenario I
TPR 1.000 0.987 1.000 0.987 1.000 0.987 1.000 0.987
PPV 0.560 1.000 1.000 1.000 0.940 1.000 1.000 1.000

Scenario II
TPR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
PPV 0.500 0.509 1.000 0.510 1.000 0.532 1.000 0.510

Scenario III
TPR 1.000 1.000 0.940 0.940 1.000 1.000 1.000 1.000
PPV 0.505 0.505 0.959 0.979 0.505 0.505 0.505 0.694

F I G U R E 6   Comparison of learning results S(L(Xj,te))
(20)

1
: [I–II,

Layer1, GD, BCT]

     |  569KIM

As shown in Section 5.1, Table 3 indicates that LSTM (no
shuffle) with 60 epochs gives similar or even better results
for TPRs than those of BNN, which uses an optimal num-
ber of iterations; however, the values of PPV are not accept-
able. Table 4 compares TPR and PPV for LSTM (shuffle)
and LSTM (no shuffle) with 10 hidden nodes and 10 epochs.
In this setting, LSTM (shuffle) seems better than LSTM (no
shuffle) except TPR for scenario III with MMT. Although
some measurement values, such as PPV in scenario III, are
not sufficient to accept, they could be improved by increasing
the number of epochs. Similar to BNN, BCT seems better
than MMT for any number of hidden nodes and algorithms
for these measures. Table 5 compares Ttr and Tte in the same
settings as those of Table 4. It shows that LSTM (shuffle) re-
quires more time for training than LSTM (no shuffle) for sce-
nario I, whereas the differences are negligible for other two
scenarios. Testing times are almost the same in all scenarios,
preprocessing methods, and optimizers, regardless of shuffle.
It also shows that LSTM requires more time for training and
testing than BNN, as shown in Table 2. Figure 9 compares the

cost of [I–III, H2, AD, BCT/MMT] for varying epochs when
LSTM (shuffle) is applied, showing that the cost of scenario
I converges rapidly during the first few epochs for both BCT
and MMT, and scenario I converges faster than do the other
two scenarios. Figure 10 shows the F1 scores and accuracy
scores of [I & III, H2, GD/AD, MMT], for varying training
set ratios. Although a small number of epochs (10 epochs) are
executed, using more than 50% of dataset for training gives
acceptable scores except in the case of [III, H2, GD, MMT].

The obtained results can be compared with the existing
results. Table 6 summarizes the comparison of performance
measures for scenario I with GD and SVM, scenario III with
AD, and the existing results. A detailed explanation of each
proposed algorithm can be found in the corresponding arti-
cle. As shown in the table, scenario I with GD (BNN and
LSTM (shuffle) both) is better than the existing results for the
measures. Because the dataset used in scenario III was pro-
vided by the authors of [8], the results of scenario III can be
compared with their results, and the performance of LSTM
can be compared with those of [14,15], [18], and [20]. For
instance, the measure values in the “[8] (2016)” row in the
table are computed by using the values of the normal and
UDP Flood in the confusion matrix in Table 6 in [8], and
the normal and UDP Flood values in the confusion matrix
in Table 6. Although the MLP setting is different from ours,
using 16 nodes, a maximum of 500 epochs, and a learning
rate of 0.3, and a small portion of their dataset is used in our
experiment, similar results are obtained with smaller epochs.
The testing accuracy and TPR of [14] are only better than
LSTM (shuffle) of scenario III. This may be due to using dif-
ferent hyperparameters and datasets. For instance, [14] used
four layers and 64 neurons for LSTM with ISCX 2012, which
contains data from 2010. In addition, the training and testing
times can be compared with the results in [11]. For instance,
those values are 1.42 and 0.35 second in the reference while
our results are 0.211 and 0.001 second for [II, Layer1, GD,
BCT], respectively, as shown in Table 2. More comparison of
existing training algorithm performances, such as those from
decision tree, Naïve Bayes, random forest, and K‐means, can
be found in several articles (e.g. [13,16]). It is difficult to di-
rectly compare our results with other recent results because
the experimental settings and data used are different. Based
on the comparison, however, the obtained values are believed
to be reliable, and the preprocessing methods, hyperparame-
ters, and feature extraction algorithms used in this study are
appropriate for DDoS attack detection, including attack traf-
fic with recent characteristics.

From the experimental process, the following is obtained:
For BNN, (a) single layer with appropriate learning rate is
better than multi‐layer in terms of training time and cost,
(b) learning rate depends on several factors, such as the op-
timizer used, and has a crucial role for rate of convergence
in the training process and performance measure values. (c)

F I G U R E 7   Comparison of costs and accuracies: [I–III, Layer1,
GD/AD, BCT]

F I G U R E 8   Comparison of costs and accuracies: [I–II, Layer2,
AD, BCT/MMT]

570  |     KIM

some measures, such as TPR for LSTM RNN, are better than
those for BNN for recent datasets, whereas LSTM RNN re-
quires a longer time than BNN for attack detection. Based

on the results, it can be concluded that DDoS attacks can be
detected fast with high accuracy when the learning rate and
learning algorithms are chosen appropriately.

T A B L E 4   Results for different environments with 10 hidden nodes and 10 epochs: TPR, PPV (probability)

Algorithm LSTM (shuffle, H2) LSTM (no shuffle, H2)

Optimizer GD AD GD AD

PM B M B M B M B M

Scenario I

TPR 1.000 0.987 1.000 0.987 1.000 0.987 1.000 0.987

PPV 1.000 0.987 1.000 0.987 0.560 0.987 0.987 0.987

Scenario II

TPR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

PPV 1.000 0.745 1.000 0.721 0.500 0.745 1.000 0.538

Scenario III

TPR 1.000 0.940 1.000 0.94 1.000 1.000 1.000 1.000

PPV 0.505 0.734 0.685 0.959 0.505 0.505 0.505 0.505

T A B L E 5   Results for different environments: Ttr and Tte

Algorithm LSTM (shuffle, H2) LSTM (no shuffle, H2)

Optimizer GD AD GD AD

PM B M B M B M B M

Scenario I

Ttr 11.268 11.702 12.062 11.725 9.751 10.235 10.765 11.116

Tte 0.020 0.010 0.012 0.011 0.011 0.010 0.011 0.012

Scenario II

Ttr 8.645 8.035 8.397 8.166 8.036 8.038 8.608 8.530

Tte 0.028 0.010 0.009 0.010 0.011 0.009 0.020 0.008

Scenario III

Ttr 9.533 10.808 9.355 10.548 9.238 9.611 10.021 9.315

Tte 0.011 0.011 0.011 0.009 0.011 0.014 0.009 0.012

F I G U R E 9   Comparison of costs: [I–III, H2, AD, BCT/MMT]
F I G U R E 1 0   Comparison of F1 and accuracy scores: [I & III,
H2, GD/AD, MMT]

     |  571KIM

6  |   CONCLUSIONS

In this study, supervised learning algorithms are applied to
three different traffic sets including DDoS attacks. BNN
and LSTM RNN are considered for feature extraction via
TensorFlow. The preprocessing methods, optimizers, and
network architectures that are appropriate detecting DDoS
attacks are investigated. For different environments, the hy-
perparameters are appropriately determined for fast learn-
ing convergence, and the corresponding learning parameters

providing high accuracy of detection are obtained. As the
data accumulate, DDoS attacks can be detected by updating
the learning parameters. The obtained performance meas-
ures provide a criterion in which the detection equipment is
implemented.

This method could be applied to detect other abnormal
behavior and extend to detect several types of attacks from a
mixture of traffic, including new types of attacks that result
from network evolution. The selections of traffic components
that characterize the new types of attacks have to be studied

T A B L E 6   Comparison with existing results

Comparison Data/Preprocess Algorithm Accte TPR PPV

I CAIDA + DARPA
/BCT

BNN(GD)
(opt. iteration)

1.0000 1.0000 1.0000

 SVM(RBF) 1.0000 0.9750 1.0000

I CAIDA + DARPA
/BCT

LSTM
(GD, shuffle)
(10 eps)

1.0000 1.0000 1.0000

III UDP/MMT BNN(AD)
(opt. iteration)

0.9700 0.9400 1.0000

III UDP/MMT LSTM
(AD, shuffle)
(10 eps)

0.9400
(acc. score)

0.9400 0.9600

[11] (2013) Mixed(CAIDA)
/MMT

NFBoost
+cost min.

0.9880 N/A N/A

[13] (2015) CAIDA
/MMT

Adaboost
+RF

0.9989 N/A N/A

[7] (2016) KDD’99 proposed 0.9329 0.9186 N/A

[8] (2016) UDP MLP
(500 max. eps)

0.9900
(acc. score)

0.9000 1.0000

[26] (2017) CAIDA proposed 1.0000 0.9995
N/A

 DARPA 1.0000 1.0000

[22] (2017) KDD’99
/Normalization

proposed 0.9998 0.9940 0.9984

[14] (2017) ISCX 2012/
Normalization

LSTM 0.9799 0.9788 0.9810

CNN LSTM 0.9589 0.9420 0.9753

GRU 0.9679 0.9501 0.9841

[15] (2018) KDD’99 RNN 0.9855

N/A N/A
PCA RNN 0.9859

PCA SVM 0.9853

LSTM 0.9850

[23] (2018) Collected
/MMT

SAE 0.7721
– 0.9703

0.6465
– 0.9535

N/A

[18] (2019) CTU‐13 Botnet &
ISCX 2012 IDS/
binary string

LSTM
(hidden layer: 0–2)

0.8067
– 0.9367

N/A N/A

[20] (2019) AzScienceNet
/Normalization

Improved CNN
(500 eps)

0.7744 0.8455 0.8923

Improved LSTM
(140 eps)

0.6974 0.7522 0.8865

572  |     KIM

in advance. Finding the optimal values of hyperparameters
related to ML techniques needs further study. In addition,
more advanced technologies of ML that pertains to time se-
ries data and newly developed statistical models for time se-
ries need to be compared.

ACKNOWLEDGMENTS

Support for CAIDA's Internet Traces is provided by the
National Science Foundation, the US Department of
Homeland Security, and CAIDA Members. The author also
appreciates the sharing of datasets used in this paper by MIT
Lab and the authors of [8].

ORCID

Meejoung Kim https://orcid.org/0000-0002-8081-0489

REFERENCES

	 1.	 S. Abraham and S. Nair, Cyber security analytics: a stochastic
model for security quantification using absorbing markov chains,
J. Commun. 9 (2014), no. 12, 899–907.

	 2.	 X. Liang and Y. Xiao, Game theory for network security, IEEE
Commun. Survey and Tuts. 15 (2013), no. 1, 472–486.

	 3.	 A. Fielder et al., Decision support approaches for cyber security
investment, Decis Support Syst. 86 (2016), 13–23.

	 4.	 M. Kim, Game theoretic approach of eavesdropping attack in mil-
limeter‐wave‐based WPANs with directional antennas, Wireless
Netw. 25 (2019), no. 6, 3205–3222.

	 5.	 Y.‐C. Wu et al., DDoS detection and traceback with decision tree
and grey relational analysis, Int. J. Ad Hoc Ubiquitous Comput. 7
(2011), no. 2, 306–314.

	 6.	 T. Subbulakshmi et al., Detection of DDoS attacks using Enhanced
Support Vector Machines with real time generated dataset, in
Proc. Int. Conf. Advance Comput., Chennai, India, Dec. 2011, pp.
17–22.

	 7.	 C. Guo et al., A two‐level hybrid approach for intrusion detection,
Neurocomput. 214 (2016), 391–400.

	 8.	 M. Alkasassbeh et al., Detecting distributed denial of service at-
tacks using data mining techniques, Int. J. Adv. Comput. Sci.
Applicat. 7 (2016), no. 1, 436–445.

	 9.	 X. Zanget al., Botnet detection through fine flow classification,
CSE Dept Technical Report, no. CSE11–001, 2011.

	10.	 P. Salunkhe and M. Shishupal, Denial‐of ‐service attack detection
using KDD, Int. J. Applicat. Innovation Eng. Manag. 4 (2015), no.
3, 1–5.

	11.	 P. A. R. Kumar and S. Selvakumar, Detection of distributed denial
of service attacks using an ensemble of adaptive and hybrid neuro‐
fuzzy systems, Comput. Commun. 36 (2013), 303–319.

	12.	 X. Ma and Y. Chen, DDoS detection method based on chaos anal-
ysis of network traffic entropy, IEEE Commun. Lett. 18 (2014), no.
1, 114–117.

	13.	 R. Robinson and C. Ciza Thomas, Thomas, Ranking of machine
learning algorithms based on the performance in classifying
DDoS attacks, in Proc. IEEE Recent Adv. Intell. Computat. Syst.,
Trivandrum, India, Dec. 2015, pp. 10–12.

	14.	 X. Yuan, C. Li, and X. Li, Deepdefense: identifying ddos attack via
deep learning, in Proc. IEEE SMARTCOMP, Hong Kong, China,
2017, pp. 1–8.

	15.	 Q. Li et al., DDoS Attacks Detection using Machine Learning
Algorithms, in: G. Zhai, J. Zhou, P. An, X. Yang (eds) Digital TV
and Multimedia Communication. IFTC 2018. Communications in
Computer and Information Science, vol. 1009. Springer, Singapore,
pp 205–216.

	16.	 Z. He, T. Zhang, and R. B. Lee. Machine learning based DDoS
attack detection from source side in cloud, in Proc. IEEE ICCSCC,
New York, NY, 2017, pp. 114–120.

	17.	 A. Verma, M. Arif, and M. S. Husain, Analysis of DDoS attack de-
tection and prevention in cloud environment: A review, Int. J. Adv.
Research Comput. Sci. 9 (2018), 107–113.

	18.	 R. Priyadarshini and R. K. Barik. A deep learning based intelligent
framework to mitigate DDoS attack in fog environment, J. King
Saud Univ.–Comput. Inf. Sci. (2019), published on line. https​://doi.
org/10.1016/j.jksuci.2019.04.010

	19.	 C. Li et al., Detection and defense of ddos attack–based on deep learn-
ing in openflow‐based sdn, Int J. Commun. Syst. 31 (2018), 1–15.

	20.	 R. M. Alguliyev, R. M. Aliguliyev, and F. J. Abdullayeva, The im-
proved LSTM and CNN Models for DDoS attacks prediction in so-
cial media, Int. J. Cyber Warfare Terrorism. 9 (2019), no. 1, 1–16.

	21.	 N. Sharma, A. Mahajan, and V. Mansotra, Machine learning tech-
niques used in detection of DoS attacks: a literature review, Int. J.
Adv. Research Comput. Sci. Softw. Eng. 6 (2016), no. 3, 100–105.

	22.	 B. Jia et al., A DDoS attack detection method based on hybrid het-
erogeneous multiclassifier ensemble learning, Hindawi J. Elect.
Comput. Eng. 2017 (2017), 4975343:1–9.

	23.	 M. E. Aminanto et al., Deep abstraction and weighted feature
selection for Wi‐Fi impersonation detection, IEEE Trans. Inf.
Forensics Secur. 13 (2018), no. 3, 621–635.

	24.	 T. George, The next big cybercrime vector: Social media, Security
Week (2014) Retrieved from https​://www.secur​itywe​ek.com/next-
big-cyber​crime-vector-social-media​

	25.	 T. Peng, C. Leckie, and K. Ramamohanarao. Survey of network‐
based defense mechanisms countering the DoS and DDoS prob-
lems, ACM Comput. Surveys. 39 (2007), no. 1, 3:1–42.

	26.	 N. Hoque, H. Kashyap, and D. K. Bhattacharyya, Real‐time DDoS
attack detection using FPGA, Comput. Commun. 110 (2017), no.
C, 48–58.

	27.	 H. Choi and H. Lee, Identifying botnets by capturing group activi-
ties in DNS traffic, Comput. Netw. 56 (2012), 20–33.

	28.	 S. Suresh and N. S. Ram, A review on various DPM trace back schemes
to detect DDoS attacks, Indian J. Sci. Technol. 9 (2016), no. 47, 1–8.

	29.	 J. Katerina, K. Argyraki, and D. R. Cheriton, Active internet traf-
fic filtering: real‐time response to denial‐of‐service attacks, IEEE/
ACM Trans. Netw. 17 (2009), no. 4, 1284–1297.

	30.	 F. Anjum, D. Subhadrabandhu, and S. Sarkar, Signature based
Intrusion Detection for Wireless Ad‐Hoc Networks: A Comparative
study of various routing protocols, in Proc. Veh. Technol. Conf.,
Orlando, FL, USA, Oct. 2003, pp. 2152–2156.

	31.	 S. M. T. Nezhad, M. Nazari, and E. A. Gharavol, A novel DoS and
DDoS attacks detection algorithm using ARIMA time series model
and chaotic system in computer networks, IEEE Commun. Lett. 20
(2016), no. 4, 700–703.

	32.	 Q. Yan and F. R. Yu, Distributed denial of service attacks in soft-
ware‐defined networking with cloud computing, IEEE Commun.
Mag. 53 (2015), no. 4, 52–59.

https://orcid.org/0000-0002-8081-0489
https://orcid.org/0000-0002-8081-0489
https://doi.org/10.1016/j.jksuci.2019.04.010
https://doi.org/10.1016/j.jksuci.2019.04.010
https://www.securityweek.com/next-big-cybercrime-vector-social-media
https://www.securityweek.com/next-big-cybercrime-vector-social-media

     |  573KIM

	33.	 G. Somani et al., Scale inside‐out: rapid mitigation of cloud DDoS
attacks, IEEE Trans. Dependable Secure Comput. 15 (2018), no. 6,
1–14.

	34.	 S.‐S. Alireza et al., Taxonomy of distributed denial of service
mitigation approaches for cloud computing, J. Netw. Comput.
Applicat. 58 (2015), 165–179.

	35.	 S. Behal and K. Kumar, Measuring the impact of DDoS attacks on
Web Services ‐ A realtime experimentation, Int. J. Comput. Sci. Inf.
Security. 14 (2016), no. 9, 323–330.

	36.	 P. Probst, A.‐L. Boulesteix, and B. Bisch, Tunability: importance
of hyperparameters of machine learning algorithms, J. Mach.
Learn. Research. 20 (2019), 1–32.

	37.	 J. Kimet al., CHOPT: automated hyperparameter optimization
framework for cloud‐based machine learning platforms, 2018,
arXiv: 1810.03527v2.

	38.	 J. Wu et al, Hyperparameter optimization for machine learning
models based on bayesian optimization, J. Electron. Sci. Technol.
17 (2019), no 1, 26–40.

	39.	 D. H. Deshmukh, T. Ghorpade, and P. Padiya. Improving classi-
fication using preprocessing and machine learning algorithms on
NSL‐KDD dataset, in Proc. Int. Conf. Commun. Inf. Ccomput.
Technol., Mumbai, India, Jan. 2015, pp. 1–6.

	40.	 CAIDA: Index of/datasets/security/ddos‐20070804 [Online]
Available from: https​://data.caida.org/datas​ets/secur​ity/ddos-
20070​804/

	41.	 MIT Lincoln Lab. Available from: https​://www.ll.mit.edu/ideva​l/
data/1998d​ata.html [last accessed March 22, 2019].

	42.	 Dataset (used for submain) final dataset.rar Available from: https​
://www.resea​rchga​te.net/publi​catio​n/29296​7044_Datas​et_Detec​
ting_Distr​ibuted_Denial_of_Servi​ce_Attac​ks_Using_Data_
Mining_Techn​iques​

	43.	 J. W. Osborne, Improving your data transformations: Applying
the Box‐Cox transformation, Practical Assessment, Research
Evaluation 15 (2010), no. 12, 1–9.

	44.	 D. P. Kingma and J. L. Ba, ADAM: A method for stochastic opti-
mization, in Proc. Int. Conf. Learn. Representations, San Diego,
USA, 2015, 1–15.

	45.	 A. Azzouni and G. Pujolle. A long short‐term memory recurrent
neural network framework for network traffic matrix prediction,
arxiv 1705.05690, v3 Thu, 8 Jun 2017.

AUTHOR BIOGRAPHY

Meejoung Kim received her BS in
mathematics from Korea University,
Seoul, Rep. of Korea, in 1986; an MS
in mathematics from both Korea
University and the University of
Minnesota, Twin Cities, Minneapolis,
MN, in 1988 and 1993, respectively;

and her PhD in mathematics from Korea University in
1996. From 1993 to 1999, she worked as a lecturer and
research fellow in the Department of Mathematics at
Korea University. From 2000 to 2004, she worked as a
research fellow and an assistant professor with Brain
Korea 21 Information Technology. Since 2004, she has
been a professor in the Research Institute for Information
and Communication Technology, Korea University, Seoul,
Rep. of Korea. She teaches probability theory and com-
plex analysis. Her research interests include mm‐wave
WPANs, wireless communication systems, wireless secu-
rity, white noise analysis, and machine learning.

https://data.caida.org/datasets/security/ddos-20070804/
https://data.caida.org/datasets/security/ddos-20070804/
https://www.ll.mit.edu/ideval/data/1998data.html
https://www.ll.mit.edu/ideval/data/1998data.html
https://www.researchgate.net/publication/292967044_Dataset_Detecting_Distributed_Denial_of_Service_Attacks_Using_Data_Mining_Techniques
https://www.researchgate.net/publication/292967044_Dataset_Detecting_Distributed_Denial_of_Service_Attacks_Using_Data_Mining_Techniques
https://www.researchgate.net/publication/292967044_Dataset_Detecting_Distributed_Denial_of_Service_Attacks_Using_Data_Mining_Techniques
https://www.researchgate.net/publication/292967044_Dataset_Detecting_Distributed_Denial_of_Service_Attacks_Using_Data_Mining_Techniques

