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1  |   INTRODUCTION

The evolution of networks and the development of smart mo-
bile devices have made it more convenient and easier than 
ever to obtain information and interact with others. Such con-
venience, however, leads to new types of network security 
problems that threaten our lives, such as personal informa-
tion leaks or even national security issues. Network security 
consists of several factors, such as policies and practices ad-
opted to prevent and detect the behavior of malicious nodes. 
Attack prevention and detection techniques in networks have 
been studied steadily over the past two decades with vari-
ous approaches, such as stochastic modeling, decision the-
ory, and game theory [1‒4]. Recently, machine learning 
(ML) techniques, such as multilayer perceptron (MLP), have 

been applied to network attack detection [5‒23]. In addition, 
as social media outlets, such as Facebook and Twitter, are 
regarded as possible vehicles for the next large cybercrime 
[24], research on the prediction of cyberattacks based on so-
cial media data has been studied [20].

Some attacks by malicious nodes prevent access to net-
work resources and cause serious threats and damage. For 
instance, a Denial of Service (DoS) attack deprives legit-
imate end users of network resources, as malicious nodes 
overwhelm the target system by transmitting extensively and 
eventually paralyzing the system. There are several types 
of DoS attacks such as TCP/SYN Flood, Ping Flood, UDP 
Flood, and Distributed Denial of Service (DDoS) [25]. In a 
DDoS attack, multiple compromised malicious nodes attack 
a single target. In a typical DDoS attack, the attacker makes 
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a DDoS master (botmaster), using the vulnerability in one 
computer system. The botmaster then identifies vulnerable 
systems and infects them with malware. Eventually, it in-
structs the infected or controlled computers (zombie army or 
botnet) to launch an attack against a specified target. A Smurf 
attack is an example of a DDoS attack. In the attack, large 
numbers of Internet Control Message Protocol (ICMP) echo 
request packets are broadcasted to a network using an IP ad-
dress that is a spoofed source IP of the intended victim. The 
nodes associated with the network respond to this request by 
sending replies to the IP address of the victim. Consequently, 
the victim computer is flooded with traffic [25]. 

There are various ways to prevent and detect DDoS at-
tacks, such as the trace back scheme and traffic filtering au-
tonomous system [26‒29]. The trace back scheme finds the 
locations of sources for attacks, whereas a traffic filtering au-
tonomous system uses a traffic filter to drop traffic that does 
not originate from the network or is destined to the network. 
Another method is traffic aggregation with traffic classifica-
tion. Signature‐based detection and anomaly‐based detection 
are the two different approaches for this method. The former 
monitors packets on a specified network and compares the 
packets with a set of signatures from known malicious threats 
[30], whereas the latter depends on the network behavior as 
the system distinguishes attack data from traffic data based 
on a training process. The output obtained by the training 
process can be updated when new data are added while pre-
serving the previously acquired knowledge. ML techniques 
belong to this category.

Considerable research has recently been conducted on the 
prevention and detection of cyberattacks, including DoS and 
DDoS attacks [5‒35], especially in cloud computing environ-
ments [16,17], [25], [32‒34] and software defined network-
ing (SDN) architecture [17‒19], [32]. Several ML techniques 
([5,6], [8‒22]) and the autoregressive integrated moving av-
erage (ARIMA) time series model [31] were considered for 
the detection of DoS attacks including DDoS. In addition, 
[20] used social media data to predict attacks, whereas [35] 
developed DDoS Testbed (DDoSTB) to generate a variety 
of attack scenarios. Many studies using ML techniques in 
detecting attacks have mainly applied different ML feature 
extraction algorithms or modified algorithms to improve per-
formance. Details of recent studies are presented in the fol-
lowing section.

There are several hyperparameters associated with ML 
techniques. Hyperparameters are the parameters that control 
the learning process. They are the higher level concepts of 
ML techniques, represented as variables, which determine 
the complexity of network structure and the ability to learn. 
For instance, the numbers of hidden units and layers, and the 
learning rate are examples of hyperparameters. Because ap-
propriately chosen values of hyperparameters may resolve 
overfitting and underfitting problems and reduce training 

time and costs that lead to performance improvement, hyper-
parameter tuning is a critical step in the training process of 
an ML model [36]. Recently, these issues have been studied 
[37,38]. In addition, preprocessing of data is also an import-
ant step in the ML technique because it derives useful infor-
mation from raw data and transforms the derived information 
into a format that increases the learning ability of the model 
[39].

In this study, we analyze DDoS attacks by ML tech-
niques. Datasets derived from three different sources of traf-
fic including DDoS attacks are used for training and testing 
after preprocessing by proper transformation. In the training 
process, two supervised learning algorithms, a basic neural 
network (BNN) and a long short‐term memory recurrent 
neural network (LSTM RNN), are considered. ML is per-
formed via TensorFlow. The motivation of this study is as 
follows: (a) How do the different preprocessing methods and 
various values of hyperparameters affect the performance of 
the ML techniques? (b) What are the suboptimal values of 
hyperparameters that enable quick and accurate detection for 
feature extraction algorithms? (c) Do learning former traf-
fic and learning one dataset affect the learning of sequential 
traffic and another dataset, respectively, in a DDoS attack? 
(d) Are the ML algorithms suitable for detecting attacks on 
older data applicable for detecting attacks on recent data? 
Based on this motivation, two preprocessing methods, three 
training scenarios, and several different environments are 
considered. Different environments are represented by var-
ious hyperparameters, such as different optimizers and net-
work architectures in the experiment. The learning rates and 
iteration numbers are obtained by exhaustive search based 
on the grid search method [36] in such a way as to rapidly 
decrease the cost function for BNN, and one of the deter-
mined learning rates is used in LSTM RNN. Other hyperpa-
rameters, including the numbers of layers and hidden nodes, 
are fixed with constants. The constants are determined by 
considering the detection accuracy and observed character-
istics of data during the experiment. Feature extraction al-
gorithms are applied to recent traffic, including attacks, to 
determine whether they are applicable to new attack charac-
teristics. There are several studies that have considered the 
optimal hyperparameters in an ML model, including [37]. 
To the best of our knowledge, however, this is the first at-
tempt to investigate the joint effect of preprocessing methods 
and hyperparameters on the performance of DDoS attack de-
tection using ML techniques. The contribution of this study 
is as follows: (a) The joint effect of preprocessing methods 
and hyperparameters on the performance of ML techniques 
is investigated. (b) The effect of learning former traffic on 
the analysis of sequential traffic and the effect of learning 
one dataset on application to another dataset are studied. (c) 
The applicability of existing ML technologies to detect at-
tacks with new attack characteristics is investigated. (d) Two 
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optimizers commonly used in ML models are compared for 
DDoS detection using TensorFlow.

This paper includes the following: Section 2 presents ex-
isting studies of detection of cyberattacks including DDoS 
attacks; Section 3 describes the ML process; Section 4 and 
Section 5 present performance measures and the exper-
imental results, respectively; and Section 6 provides the 
conclusion.

2  |   RELATED WORKS: 
DETECTION OF CYBERATTACKS 
INCLUDING DDOS

There are many studies addressing the prevention and de-
tection of cyberattacks including DDoS attacks [5‒35] and 
many of them are based on ML techniques [5‒16], [18‒23]. 
Examples of techniques are decision trees [5], [16]; support 
vector machine (SVM) [6], [16]; two‐level hybrid solution 
consisting of anomaly and misuse detection [7]; classifica-
tion techniques such as MLP, Naïve Bayes, and random for-
est (RF) [8], [16]; K‐mean clustering algorithms [9], [16]; 
genetic algorithm (GA) [10]; ensemble of neuro‐fuzzy and 
genetic fuzzy systems [11]; Lyapunov exponent based on en-
tropy [12], [31]; convolutional neural network (CNN) [14], 
[20]; RNN [14]; LSTM RNN [14], [18‒20]; gated recurrent 
unit (GRU) RNN [14]; hybrid heterogeneous multi‐classi-
fier ensemble learning [22]; and deep‐feature extraction and 
selection method [23]. Details of the existing studies are as 
follows.

A DDoS attacks detection system designed based on deci-
sion tree and traffic‐flow pattern‐matching was used to trace 
back the locations of attackers [5]. The study of [6] focused 
on the generation and detection of DDoS attack data by using 
enhanced SVM. A two‐level hybrid approach consisting of 
two anomaly detection components and one misuse detection 
component was considered [7]. A new dataset containing 
modern DDoS attacks, such as SIDDoS and HTTP Flood, was 
collected in different network layers, and MLP, Naïve Bayes, 
and RF were applied to classify them [8]. An experiment was 
conducted to observe the discriminating capabilities of hier-
archical and K‐mean clustering algorithms for botnet trace in 
the presence of background internet traffic [9]. A GA based 
approach [10] and adaptive and hybrid neuro‐fuzzy systems 
as subsystems of an ensemble [11] were considered in DoS 
and DDoS detection. A variation of the Lyapunov exponent 
was proposed to detect anomalies in network traffic based on 
entropy [12].

Several deep learning (DL) models, such as CNN, 
RNN, LSTM, and GRU neural network (NN) [14], and 
the PCA RNN framework [15] were considered to iden-
tify DDoS attacks. The performances of SVM, decision 
tree, Naïve Bayes, RF, K‐means, and Gaussian‐mixture 

model were compared [16] in terms of expectation‐maxi-
mization. A defense mechanism mitigating DDoS attacks 
applicable to the fog environment as well as the cloud 
environment was considered [18], whereas a DDoS de-
tection model and defense system based on LSTM was 
proposed for SDNs [19]. Classifiers based on CNN and 
LSTM were presented to predict the likelihood of cyber-
attack‐related words in large volumes of social network-
ing texts [20]. Hybrid heterogeneous multi‐classifier 
ensemble learning and a heuristic detection algorithm 
were proposed to construct a detection system [22]. The 
combination of stacked feature extraction and weighted 
feature selection was proposed for the detection of an im-
personating Wi‐Fi network [23]. A real‐time DDoS at-
tack detection method using a correlation measure was 
proposed [26], whereas a mechanism to detect botnets 
using their fundamental characteristics, such as group 
activity, was considered [27]. Probabilistic and deter-
ministic packet marking techniques to detect DDoS at-
tacks [28] and a highly distributed DDoS attack blocking 
mechanism [29] were proposed. A signature detection 
technique was proposed to investigate the ability of var-
ious routing protocols that facilitate intrusion detection 
when the attack signatures are completely known [30]. 
Furthermore, a time series based on the number of pack-
ets in DDoS attack traffic was considered; meanwhile, the 
ARIMA model was used for prediction, and the chaotic 
behavior of prediction error was considered by using the 
Lyapunov exponent [31]. An experiment of a real‐time 
DDoS attack was conducted to study attack absorption 
and mitigation for various target services in the pres-
ence of dynamic cloud resource scaling [33]. The impact 
of DDoS attacks on web services was measured using 
several metrics such as throughput, average latency, and 
round‐trip time [35]. Many studies that focused on pas-
sive defenses have analyzed the traffic on the destination 
side after attack occurred, while [16] and [18] considered 
it on the source side.

In addition, there are several survey papers dealing 
with DDoS attacks. The evaluation and ranking of several 
supervised ML algorithms were discussed with the aim of 
increasing precision and recall while maintaining detection 
accuracy and reducing type I and type II errors [13]. Different 
scenarios of DDoS attacks were surveyed [17], focusing on 
different methods of classification, detection, and defense of 
DDoS attack, and the eligibility of ML approach to DDoS 
attack defense was evaluated. A systematic review of ML 
techniques [21] and defense methods [25] for DoS attack de-
tection were provided. Defense mechanisms against DDoS 
attacks in cloud computing environments using SDNs were 
also provided [32]. Furthermore, the main features of exist-
ing DDoS mitigation strategies and their functionalities were 
discussed [34].
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3  |   PROCESS OF MACHINE 
LEARNING

3.1  |  Architecture of neural network
Artificial neural networks consist of three parts: input layer, 
hidden layer, and output layer. A dataset is fed into the input 
layer and preprocessed for efficient learning. The learning 
process of the training set occurs in the hidden layer. During 
the learning process, the features of training data are extracted 
and saved as “learning parameters,” which are presented as 
weight matrices W and biases b. In the output layer, tests are 
performed using these matrices to verify the results of learn-
ing. Figure 1 illustrates the general ML process.

In this study, we consider two neural networks: a BNN and a 
LSTM RNN. BNN is a model using a basic logistic regression 
classifier, whereas LSTM RNN is a model using LSTM cells in 
hidden layers. LSTM RNN is a network model that considers 
the vanishing gradient problem of RNN, which is an NN deal-
ing with time series. A LSTM cell is illustrated in Figure 2.

The objective of an ML process is to detect attacks from 
a traffic set with high accuracy as fast as possible. In general, 
the accuracy becomes high if the cost becomes small, and a 
smaller number of iterations (epochs, eps) of learning enable 
faster detection. As the cost is represented as a function of 
learning parameters W and b, the objective function of ML 
can be formulated as follows:

In the (Objective), C is a cost function, and k is the number 
of iterations. The notations in (Objective) will be explained in 
Algorithm 1, which is a description of BNN.

3.2  |  Preprocessing of datasets
A dataset has to be preprocessed for efficient learning. To 
determine the preprocessing methods, traffic characteristics, 
such as distributions of transmitted packets and accumulated 
packets in a unit time interval, have to be investigated.

In this study, three datasets are used for ML processing: “DDoS 
Attack 2007” obtained from CAIDA (Center for Applied Internet 
Data Analysis) [40], “DDoS attack 1998” of DARPA (Defense 
Advanced Research Projects Agency) obtained from MIT Lab 
[41], and “recent DDoS attacks dataset” obtained from [42]. The 
third dataset was collected in 2016 by the authors of [8]. It contains 
four types of recent DDoS attacks—HTTP Flood, SQL Injection 
Distributed Denial of Service (SIDDOS), UDP Flood, and Smurf.

The Wireshark, a traffic analyzer, is used to examine traf-
fic characteristics. The dataset from CAIDA contains packets 
transmitted “from attackers to a victim (to victim)” and “from 
a victim to attackers (from victim)” separately. Figure 3 shows 
the number of packets transmitted “from victim” and “to vic-
tim” over the course of 5 minutes when the DDoS attack be-
gins for CAIDA. It shows that the transmitted packets “from 
victim” and “to victim” are maximally below 800 bytes and 
above 150 000 bytes, respectively, for 1 second. As seen from 
Figure 3, there are large differences between the number of 
packets occurring in the normal state (before 80 seconds) and 
that in the attack state (after 80 seconds). That is, the distribu-
tions of transmitted packets in the successive time intervals of 
these two states are far from normal. To deal with such data, 
preprocessing of the dataset is necessary for efficient training.

The Box‐Cox transformation (BCT) and min‐max transforma-
tion (MMT) are well known preprocessing methods of datasets. 

(Objective) min
k

{
min
W,b

C(W(k),b(k))

}
.

F I G U R E  1   Machine learning process

Input layer Output layerHidden layer

Read 
dataset 

Test with 
matrices

Learning 
process 

F I G U R E  2   Learning process of LSTM
F I G U R E  3   Number of packets transmitted in 5 min: (A) from 
victim (B) to victim

800

(A)

(B)

700
600
500
400
300
200
100

0

ces
1/stekcaP

0 40 80 120 160 200 240 280
Time (s)

All Packets
TCP errors

150,000

120,000

90,000

60,000

30,000

0

ces
1/stekcaP

0 40 80 120 160 200 240 280
Time (s)

All Packets
TCP errors



564  |      KIM

BCT converts a dataset that is not normally distributed into a rather 
normally distributed dataset [43], whereas MMT is a commonly 
used method in ML, taking values of [0, 1]. These are defined by

 and

 respectively, where λ is power parameter and x= (x1, … , xn).

3.3  |  Learning and testing process
In the following algorithm, supervised learning is considered 
with the logistic classification, and training is implemented 
using the back‐propagation algorithm.

Let {Xj}
N
j=1

 and {yj}
N
j=1

 be the preprocessed dataset and corre-
sponding label set, respectively¸ where N is the number of data 
elements. For the label, binary classification is applied. That is, 
zero or one is assigned to yj,∙ depending on the traffic state—nor-
mal or attack. Divide {Xj}

N
j=1

 and {yj}
N
j=1

 into a training (testing) 
set {Xj,tr}

N1

j=1
 ({Xj,te}

N2

j=1
) and corresponding label set {yj,tr}

N1

j=1
 

({yj,te}
N2

j=1
), respectively, where Ni, i = 1, 2, are the numbers of 

training and testing data elements satisfying N1+N2 =N. Each 
data Xj,∙ is a vector given by Xj,∙ = (x1,j, … , xm,j)∙, where each 
component xi,j is a value representing the characteristic of traffic, 
∙ is either “tr” or “te,” and m is an input dimension. The process 
of BNN is as follows:

In step 3, the initial values of weights and biases are given 
by W(1)

p
 and b(1)

p
, and l is the number of hidden layers. Step 4 

consists of training and verifying processes. In 4.1, the train-
ing process, the following linear regression L and sigmoid 
function S are used:

 and 

In the algorithm,  W(i)
p

 and b(i)
p

, the i‐th updated values 
of W(1)

p
 and b(1)

p
, are determined during the training process 

in such a way as to minimize the cost function. Note that 
S(L(Xj,tr))

(i)
p

 is the calculated value of yj by training Xj,tr in the 
p‐th layer and i‐th iteration.

The cost function is defined as follows:

In (3), C(S(x), y) is the negative log cost function defined 
by

By substituting (4) into (3), the average cost function 
computed after the i‐th learning can be written as

Equation (5) evaluates the closeness of yj,tr and S(L(Xj,tr))
(i)
p

, 
which equals the Kullback‐Leibler (KL) divergence between 
them. If the gradient decent (GD) algorithm is used,W(i)

p
 and 

b(i)
p

 are updated by

and

where n is the output dimension and � is the learning rate. The 
GD algorithm in this step can be replaced by modified algo-
rithms, such as the adaptive moment estimation (Adam: AD) 
[44]. In 4.2, the verifying process, {Xj,tr}

N1

j=1
 is tested for each 

training step by using W(i)
p

 and b(i)
p

 obtained in 4.1, and the accu-
racy for the training data is computed in each iteration. We call 
the accuracy for the training data “training accuracy” and 

BCT(xi)=

{
(x�

i
−1)∕�, �≠0,

log (xi), �=0,

(1)MMT(xi)=
xi−min (x)

max (x)−min (x)
,

L(Xj,tr)
(i)
p
=XjW

(i)
p
+b(i)

p

(2)S{L(Xj,tr)}
(i)
p
=

1

1+e−L(Xj,tr)
(i)
p

, p=1, … , l.

(3)C(W
(i)

l
, b

(i)

l
)=

1

N1

N1∑

j=1

C(S(L(Xj,tr))
(i)

l
, yj,tr).

(4)C(S(x), y)=

{
− log (S(x)), y=1,

− log (1−S(x)), y=0.

(5)C(W
(i)

l
, b

(i)

l
)=

1

N1

N1∑

j=1

[
yj,tr log S(L(Xj,tr))

(i)

l

+(1−yj,tr) log (1−S(L(Xj,tr))
(i)

l
)

]
.

W
(i)

j,p
←W

(i−1)

j,p
−��C(W

(i−1)

l
, b

(i−1)

l
)∕�Wj,p, j=1, … , m,

(6)b
(i)

j,p
←b

(i−1)

j,p
−��C(W

(i−1)

l
, b

(i−1)

l
)∕�bj,p, j=1, … , n,

Algorithm 1 Process of Machine Learning (BNN)
1: Read a dataset and pre-process the dataset: 1{ }N

j j=X and 1{ } .N
j jy =

2: Divide the pre-processed dataset 1{ }N
j j=X and corresponding 

label set 1{ }N
j jy = into a training set and testing set: 

1 2
1 ,tr 1 ,te 1{ } {{ } ,{ } }N NN

j j j j j j= = ==X X X and 1 2
1 ,tr 1 ,te 1{ } {{ } , { } }.N NN

j j j j j jy y y= = ==

3: Initialize variables: weight (1)
pW and bias (1) , 1, , .p p l=b �

4: Training and verifying processes: for 1:i k=

4.1 Training: Compute
( ) ( )

,tr( )( )
, tr( ( )) 1 / {1 },

i i
j p pi

j pS L e− += + X W bX

11, , ,j N= � 1, , .p l= �

Compute the cost function ( ) ( ) ( )( , ).i i i
l lC C≡ W b

Train by using gradient decent optimizer (or Adam 
optimizer) to minimize the cost function by updating

( )i
pW and ( ) ,i

pb 1, , .p l= �

4.2 Verifying: Compute the accuracy of 1
,tr 1{ }N

j jy = by using the 

obtained ( )i
pW and ( )i

pb for each .i

5: Testing process: Applying ( )k
pW and ( )k

pb to 2
,te 1{ } ,N

j j =X predict 
2

,te,pred 1{ } .N
j jy = Compare 2

,te,pred 1{ }N
j jy = and 2

,te 1{ } .N
j jy =

6: End
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denote it by “Acctr.” Acctr is computed by using yj,tr,pred, the pre-
diction of yj,tr, which is determined as follows:

The iteration number of training, k, is determined in this 
step in such a way as to obtain a high Acctr. Now, using the 
matrices W(k)

p
 and b(k)

p
, {Xj,te}

N2

j=1
 is tested in step 5. S(L(Xj,te))

(k)

l
 

is computed and this determines yj,te,pred, the prediction of 
yj,te, for the testing set according to (7). We call the accuracy 
of the testing set “testing accuracy” and denote it by “Accte.”

For LSTM RNN, the functions of gates in Figure 2 are 
given by

where ⊗ and ⊕ represent entry‐wise multiplication 
(Hadamard product) and entry‐wise addition (direct sum), 
respectively. The subscripts of the matrices in (8) only denote 
the gates. The notations describing the layer and iteration 
number are deleted in the matrices for notational simplicity. 
The detailed explanation of LSTM and the explicit formulas 
of the functions in (8) can be found in several articles includ-
ing [45]. Table 1 summarizes the notations used in this paper.

4  |   PERFORMANCE MEASURES

The two accuracies, Acctr and Accte, true positive rate (TPR, 
recall), positive predictive value (PPV, precision), F1 score, 

and accuracy score are considered as the performance meas-
ures. They are defined by

where TP, FP, TN, and FN are true positive, false positive, true 
negative, and false negative, respectively. Here, attack is posi-
tive class and normal is negative class. In addition, the execu-
tion times for training and testing, Ttr and Tte, are considered.

5  |   EXPERIMENTAL RESULTS

In this section, the experimental results are presented. The ex-
periment is performed by using Python 3.6 and TensorFlow 
v.1.7.0 on Intel Core i7, 16 GB RAM. The datasets of CAIDA 
and DARPA contain approximately 2  hours of traffic of 
size 23.5  GB, consisting of attack traffic and normal traf-
fic. Specifically, the CAIDA dataset covers from 20:50:08 
UTC (Coordinated Universal Time) to 21:56:16 UTC (actual 
date and time: 20070804, 13:49:36–14:54:36) and DARPA 
1998 covers 19980629, 20:57:14–19980630, 04:59:14. The 
attacks in CAIDA are identified at approximately 21:13 UTC 
with the rapid increase in network load within a few minutes, 
from approximately 200 Kbits/sec to approximately 90 MB/
sec, whereas the attacks in DARPA are identified at approxi-
mately 04:33 with the increase in network load from approxi-
mately 20 Kbits/sec to approximately 11 MB/sec. The dataset 
is divided into 10‐s periods; consequently, 707 small subsets 
(CAIDA: 396, DARPA: 311) are obtained. Normal and at-
tack traffic are mixed in each dataset, and labels are assigned 
to distinguish them. Then, the CAIDA (DARPA) dataset is 
divided into 158 (156) and 238 (155) small sets of normal 
traffic and attack traffic, respectively. Meanwhile, 300 sets 
of normal traffic and 300 of UDP Flood attack are extracted 
from the third dataset to confirm the applicability of the ML 
algorithms to recent attack traffic.

The datasets are analyzed to determine the components 
of traffic that enable the representation of attack character-
istics. Figure 4 shows the information provided by CAIDA 
dataset. As the “to victim” dataset is divided into 10‐s pe-
riods, Figure 4 is obtained by capturing the last few lines of 
two sets among 396 small subsets. As shown, it contains the 
number of transmissions, transmission times, source/destina-
tion addresses, and number of cumulated packets (in bytes) in 

(7)yj,tr,pred =

{
0, S(L(Xj,tr))

(i)

l
<0.5,

1, S(L(Xj,tr))
(i)

l
≥0.5,

j=1, … , N1.

(8)
ft =S(Wf ⋅ [ht−1,Xt]+bf ), it =S(Wi ⋅ [ht−1,Xt]+bi),

�Ct = tanh (WC ⋅ [ht−1,Xt]+bC), ot =S(Wo ⋅ [ht−1,Xt]+bo),

Ct = ft ⊗Ct−1⊕ it ⊗
�Ct, and ht =ot ⊗ tanh (Ct),

(9)Acctr =
1

N1

N1∑

j=1

(yj,tr−yj,tr,pred), Accte =
1

N2

N2∑

j=1

(yj,te−yj,te,pred),

(10)
TPR = TP∕(TP + FN), PPV = TP∕(TP + FP),

F1 score=2(PPV × TPR)∕(PPV + TPR),

and Accuracy score = (TP + TN)∕(TP + TN + FP + FN),

T A B L E  1   Summary of notations

Notation Description

Xj (Xj,tr, Xj, te) j‐th input data (training, testing)

yj (yj,tr, yj,te) Label corresponding to Xj (Xj,tr, Xj, te)

� Power parameter

m Dimension of input data

n Dimension of output data

A
(i) i‐th updated value of a vector initially 

given by A(1)

N (N1, N2) Number of data elements (training, 
testing)

� Learning rate

l Number of hidden layers

k Number of iterated learning
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(a) normal state and (b) attack state. According to the figure, 
the accumulated packets transmitted to a victim are 222 012 
bytes and 78 927 330 bytes in normal and attack states, re-
spectively. A similar trend can be found in the “from victim” 
dataset in CAIDA and DARPA traffic. Based on the anal-
ysis of datasets, three values that could be the evidence of 
attack occurrence are extracted from the three datasets (ie, 
m = 3), which are the number of source IP addresses, number 
of transmitted packets by IPs, and number of accumulated 
packets for CAIDA and DARPA. However, because recent 
traffic provides different traffic information, different com-
ponents are selected from the third dataset: the number of 
bytes, packet delay for node, and packet delay. Detailed ex-
planation of the values can be found in [8]. Figure 5 shows a 
portion of the three values extracted from the CAIDA dataset, 
which is used in ML.

We consider three scenarios depending on the datasets 
used for training and testing: I. The datasets of CAIDA and 
DARPA are mixed and then divided into training and test-
ing sets. II. CAIDA is used for training, whereas DARPA is 
used for testing. III. Recent dataset is divided into training 
and testing sets.

The data are not shuffled for BNN, while shuffled and 
unshuffled data are used in LSTM. The purpose of consid-
ering scenarios I and II in BNN is to investigate the effects 
of learning former traffic on the analysis of sequential traf-
fic and the effects of learning one dataset on application to 
another dataset, respectively. The ratio of training and testing 
sets may affect detection accuracy. During the experiment, we 
observed that using 80% of dataset for training seems relevant. 
Therefore, in the following figures for BNN and LSTM (no 
shuffle), for each dataset, the first 80% and the subsequent 
20% of normal and attack traffic are used for training and test-
ing, respectively. Meanwhile, 80% and 20% of total dataset are 
used for training and testing, respectively, for LSTM (shuffle).

For both learning algorithms, BCT with �=0 and MMT are ap-
plied for the extracted values from datasets, as shown in Figure 5. 
Then, the preprocessed data {Xj}

N
j=1

 and corresponding label yj of 
Xj are obtained. W(1)

∗
 and b(1)

∗
 are given by random normal, initially, 

for all *. As binary classification is considered, “tf.sigmoid” and 
“sigmoid_cross_entropy _with_logits” are used for BNN and 
LSTM, respectively, which correspond to (2), and “tf.reduce_mean” 
is used for (3). Two optimizers, gradient decent algorithm and 
Adam, are used. In addition, SVM with radial basis function (RBF) 
kernel is executed to compare the performance. In the following ta-
bles, B and M are used instead of BCT and MMT, and S and PM are 
used instead for scenario and performance measure, for simplicity.

5.1  |  BNN
Two values of l, 1 and 2, are considered to investigate the effect 
of the number of layers in the hidden layer for BNN, denoted as 
Layer1 and Layer2, respectively. It is observed that more lay-
ers do not provide performance improvement, whereas they re-
quire more training time. This seems to be because the range of 

F I G U R E  4   Information about packet transmission to victim: (A) not attack (B) attack

F I G U R E  5   A portion of the values used for ML: (A) Normal 
state (B) Attack state
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values used, such as the number of accumulated packets, clearly 
distinguishes the normal state and the attack state. Therefore, 
we considered only two layers. Learning rates of 10–2 and 10–1 
are used for Layer1 and Layer2, respectively, for any optimizer. 
Iteration numbers vary depending on the environment. The 
learning rates and iteration numbers are determined by exhaus-
tive grid search to decrease the cost function rapidly and ac-
cording to the convergence rates of learning, respectively.

Henceforth, the training environments are distinguished as 
[scenario, layer, algorithm, preprocessing method], for example, 
[I, Layer1, GD, BCT]. From the numerical results, the following 
is observed for scenarios I–II; i) GD (AD) is better than AD (GD) 
for Layer1 (Layer2) in terms of cost function if the same iteration 
numbers are used. ii) BCT is better than MMT in terms of accu-
racies. iii) BCT is better than MMT for Layer1, whereas MMT is 
better than BCT for Layer2 in terms of training time with similar 
accuracies. Table 2 presents Acctr, Accte, Ttr, and Tte for different 
environments. It shows that the accuracies of scenarios I–II are 
higher than those of scenario III. Since MMT has values in the 
interval [0, 1], the differences between preprocessed data values 
for MMT are smaller than those for BCT. MMT may require 
more training time, as shown in Layer1, whereas MMT requires 
less training time in Layer2 with GD. The results for scenario III 
show that this method is applicable to recent traffic, and MMT is 
better than BCT in general for the measures, owing to the time it 
takes BCT to capture the characteristics of the traffic. This is be-
cause the number of bytes is relatively large compared with 
packet delay for node and packet delay. Table 3 compares two 
measures, TPR and PPV, for BNN and LSTM (no shuffle). 

According to the table, BCT is better than MMT for any layer and 
algorithm in scenarios I–II, whereas MMT seems better in many 
cases for scenario III, when BNN is applied. Even though TPRs 
are the same in different environments, the predicted values com-
puted using the obtained W and b are different for each scenario. 
Figure 6 shows S(L(Xj,te))

(20)

1
 using the obtained learning param-

eters and the corresponding yj,te,pred of 50 sets of normal traffic 
and 50 sets of attack traffic from the testing set for [I–II, Layer1, 
GD, BCT]. It shows that the two scenarios have the same 
{yj,te,pred}

100
j=1

, but different {S(L(Xj,te))
(20)

1
}100

j=1
 values. That is, 

even though the TPRs are the same for the two scenarios, scenario 
I detects attack more accurately than scenario II does. The ob-
tained learning parameters that are used for the calculation of 
S(L(Xj,te))

(20)

1
 for scenarios I–II are as follows:

and

where “T” represents the transpose of a matrix.
Figures 7 and 8 compare the cost, training accuracy, and 

test accuracy of [I–III, Layer1, GD/AD, BCT] and [I–II, 
Layer2, AD, BCT/MMT], respectively, for varying iter-
ations. According to Figure 7, the cost for GD converges 
rapidly during the first two iterations and approximates zero 
when four iterations are performed. However, that for AD 

W
(20)

1
= [0.9753,0.8679,]T, b

(20)

1
=[0.4714] for I

(11)
W

(20)

1
= [0.9390,0.8762,−0.9756]T,

b
(20)

1
=[0.4696] for II,

T A B L E  2   Results for different environments: Accuracies (probability), training and testing times (time unit: second)

Layer Layer1 Layer2

Optimizer GD AD GD AD

PM B M B M B M B M

Scenarios I                

Acctr 1.000 0.970 1.000 0.990 1.000 0.990 1.000 0.990

Accte 1.000 0.970 1.000 0.990 1.000 0.990 1.000 0.990

Ttr 0.211 2.849 0.257 1.697 3.246 0.775 0.359 0.364

Tte 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Scenarios II                

Acctr 1.000 0.980 1.000 0.980 1.000 0.990 1.000 0.990

Accte 1.000 0.840 1.000 0.850 1.000 0.910 1.000 0.910

Ttr 0.207 8.169 0.268 0.753 27.320 0.775 0.397 0.332

Tte 0.001 0.003 0.001 0.001 0.001 0.001 0.001 0.001

Scenarios III                

Acctr 0.800 0.930 0.930 0.930 0.710 0.940 0.930 0.940

Accte 0.810 0.950 0.960 0.960 0.770 0.970 0.960 0.970

Ttr 3.019 1.187 2.341 2.822 3.641 2.682 3.581 2.858

Tte 0.007 0.007 0.005 0.005 0.007 0.007 0.006 0.007
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converges slowly and approximates zero when more than 
20 iterations are performed. As costs decrease, the training 
accuracies for GD converge fast to one while those for AD 
require more iterations to achieve the same accuracies. For 
[I–II, Layer2, AD, BCT/MMT], even though BCT is better 
than MMT in terms of measures, as seen in Tables 2 and 
3, costs for MMT are less than those for BCT, as shown in 
Figure 7. This is because of the different ranges of prepro-
cessed datasets.

5.2  |  LSTM RNN
The number of layers, number of hidden nodes, and epochs 
are fixed as constants to investigate their effect on per-
formance. Although the constants are not optimal values, 
those are determined by considering the detection accuracy 
and observed characteristics of the data during the experi-
ment. To conduct this evaluation, 1 and 10 hidden nodes 
are considered in one layer and denoted as H1 and H2, re-
spectively, 10 and 60 epochs are used for all environments, 

respectively, and the BNN value of 10−2 is used as the 
learning rate.

T A B L E  3   Results for different environments: TPR, PPV (probability)

Algorithm BNN

Layer Layer1 Layer2

Optimizer GD AD GD AD

PM B M B M B M B M

Scenario I                

TPR 1.000 0.988 1.000 0.988 1.000 1.000 1.000 0.988

PPV 1.000 0.975 1.000 1.000 1.000 0.852 1.000 1.000

Scenario II                

TPR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

PPV 1.000 0.756 1.000 0.767 1.000 0.852 1.000 0.847

Scenario III                

TPR 0.960 0.940 0.940 0.960 1.000 0.940 0.940 0.940

PPV 0.738 0.903 0.979 0.738 0.505 0.959 0.958 0.959

Algorithm LSTM (no shuffle, epochs = 60)

Layer H1 H2

Optimizer GD AD GD AD

PM B M B M B M B M

Scenario I                
TPR 1.000 0.987 1.000 0.987 1.000 0.987 1.000 0.987
PPV 0.560 1.000 1.000 1.000 0.940 1.000 1.000 1.000

Scenario II                
TPR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
PPV 0.500 0.509 1.000 0.510 1.000 0.532 1.000 0.510

Scenario III                
TPR 1.000 1.000 0.940 0.940 1.000 1.000 1.000 1.000
PPV 0.505 0.505 0.959 0.979 0.505 0.505 0.505 0.694

F I G U R E  6   Comparison of learning results S(L(Xj,te))
(20)

1
: [I–II, 

Layer1, GD, BCT]



      |  569KIM

As shown in Section 5.1, Table 3 indicates that LSTM (no 
shuffle) with 60 epochs gives similar or even better results 
for TPRs than those of BNN, which uses an optimal num-
ber of iterations; however, the values of PPV are not accept-
able. Table 4 compares TPR and PPV for LSTM (shuffle) 
and LSTM (no shuffle) with 10 hidden nodes and 10 epochs. 
In this setting, LSTM (shuffle) seems better than LSTM (no 
shuffle) except TPR for scenario III with MMT. Although 
some measurement values, such as PPV in scenario III, are 
not sufficient to accept, they could be improved by increasing 
the number of epochs. Similar to BNN, BCT seems better 
than MMT for any number of hidden nodes and algorithms 
for these measures. Table 5 compares Ttr and Tte in the same 
settings as those of Table 4. It shows that LSTM (shuffle) re-
quires more time for training than LSTM (no shuffle) for sce-
nario I, whereas the differences are negligible for other two 
scenarios. Testing times are almost the same in all scenarios, 
preprocessing methods, and optimizers, regardless of shuffle. 
It also shows that LSTM requires more time for training and 
testing than BNN, as shown in Table 2. Figure 9 compares the 

cost of [I–III, H2, AD, BCT/MMT] for varying epochs when 
LSTM (shuffle) is applied, showing that the cost of scenario 
I converges rapidly during the first few epochs for both BCT 
and MMT, and scenario I converges faster than do the other 
two scenarios. Figure 10 shows the F1 scores and accuracy 
scores of [I & III, H2, GD/AD, MMT], for varying training 
set ratios. Although a small number of epochs (10 epochs) are 
executed, using more than 50% of dataset for training gives 
acceptable scores except in the case of [III, H2, GD, MMT].

The obtained results can be compared with the existing 
results. Table 6 summarizes the comparison of performance 
measures for scenario I with GD and SVM, scenario III with 
AD, and the existing results. A detailed explanation of each 
proposed algorithm can be found in the corresponding arti-
cle. As shown in the table, scenario I with GD (BNN and 
LSTM (shuffle) both) is better than the existing results for the 
measures. Because the dataset used in scenario III was pro-
vided by the authors of [8], the results of scenario III can be 
compared with their results, and the performance of LSTM 
can be compared with those of [14,15], [18], and [20]. For 
instance, the measure values in the “[8] (2016)” row in the 
table are computed by using the values of the normal and 
UDP Flood in the confusion matrix in Table 6 in [8], and 
the normal and UDP Flood values in the confusion matrix 
in Table 6. Although the MLP setting is different from ours, 
using 16 nodes, a maximum of 500 epochs, and a learning 
rate of 0.3, and a small portion of their dataset is used in our 
experiment, similar results are obtained with smaller epochs. 
The testing accuracy and TPR of [14] are only better than 
LSTM (shuffle) of scenario III. This may be due to using dif-
ferent hyperparameters and datasets. For instance, [14] used 
four layers and 64 neurons for LSTM with ISCX 2012, which 
contains data from 2010. In addition, the training and testing 
times can be compared with the results in [11]. For instance, 
those values are 1.42 and 0.35 second in the reference while 
our results are 0.211 and 0.001 second for [II, Layer1, GD, 
BCT], respectively, as shown in Table 2. More comparison of 
existing training algorithm performances, such as those from 
decision tree, Naïve Bayes, random forest, and K‐means, can 
be found in several articles (e.g. [13,16]). It is difficult to di-
rectly compare our results with other recent results because 
the experimental settings and data used are different. Based 
on the comparison, however, the obtained values are believed 
to be reliable, and the preprocessing methods, hyperparame-
ters, and feature extraction algorithms used in this study are 
appropriate for DDoS attack detection, including attack traf-
fic with recent characteristics.

From the experimental process, the following is obtained: 
For BNN, (a) single layer with appropriate learning rate is 
better than multi‐layer in terms of training time and cost, 
(b) learning rate depends on several factors, such as the op-
timizer used, and has a crucial role for rate of convergence 
in the training process and performance measure values. (c) 

F I G U R E  7   Comparison of costs and accuracies: [I–III, Layer1, 
GD/AD, BCT]

F I G U R E  8   Comparison of costs and accuracies: [I–II, Layer2, 
AD, BCT/MMT]
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some measures, such as TPR for LSTM RNN, are better than 
those for BNN for recent datasets, whereas LSTM RNN re-
quires a longer time than BNN for attack detection. Based 

on the results, it can be concluded that DDoS attacks can be 
detected fast with high accuracy when the learning rate and 
learning algorithms are chosen appropriately.

T A B L E  4   Results for different environments with 10 hidden nodes and 10 epochs: TPR, PPV (probability)

Algorithm LSTM (shuffle, H2) LSTM (no shuffle, H2)

Optimizer GD AD GD AD

PM B M B M B M B M

Scenario I                

TPR 1.000 0.987 1.000 0.987 1.000 0.987 1.000 0.987

PPV 1.000 0.987 1.000 0.987 0.560 0.987 0.987 0.987

Scenario II                

TPR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

PPV 1.000 0.745 1.000 0.721 0.500 0.745 1.000 0.538

Scenario III                

TPR 1.000 0.940 1.000 0.94 1.000 1.000 1.000 1.000

PPV 0.505 0.734 0.685 0.959 0.505 0.505 0.505 0.505

T A B L E  5   Results for different environments: Ttr and Tte

Algorithm LSTM (shuffle, H2) LSTM (no shuffle, H2)

Optimizer GD AD GD AD

PM B M B M B M B M

Scenario I                

Ttr 11.268 11.702 12.062 11.725 9.751 10.235 10.765 11.116

Tte 0.020 0.010 0.012 0.011 0.011 0.010 0.011 0.012

Scenario II                

Ttr 8.645 8.035 8.397 8.166 8.036 8.038 8.608 8.530

Tte 0.028 0.010 0.009 0.010 0.011 0.009 0.020 0.008

Scenario III                

Ttr 9.533 10.808 9.355 10.548 9.238 9.611 10.021 9.315

Tte 0.011 0.011 0.011 0.009 0.011 0.014 0.009 0.012

F I G U R E  9   Comparison of costs: [I–III, H2, AD, BCT/MMT]
F I G U R E  1 0   Comparison of F1 and accuracy scores: [I & III, 
H2, GD/AD, MMT]
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6  |   CONCLUSIONS

In this study, supervised learning algorithms are applied to 
three different traffic sets including DDoS attacks. BNN 
and LSTM RNN are considered for feature extraction via 
TensorFlow. The preprocessing methods, optimizers, and 
network architectures that are appropriate detecting DDoS 
attacks are investigated. For different environments, the hy-
perparameters are appropriately determined for fast learn-
ing convergence, and the corresponding learning parameters 

providing high accuracy of detection are obtained. As the 
data accumulate, DDoS attacks can be detected by updating 
the learning parameters. The obtained performance meas-
ures provide a criterion in which the detection equipment is 
implemented.

This method could be applied to detect other abnormal 
behavior and extend to detect several types of attacks from a 
mixture of traffic, including new types of attacks that result 
from network evolution. The selections of traffic components 
that characterize the new types of attacks have to be studied 

T A B L E  6   Comparison with existing results

Comparison Data/Preprocess Algorithm Accte TPR PPV

I CAIDA + DARPA
/BCT

BNN(GD)
(opt. iteration)

1.0000 1.0000 1.0000

    SVM(RBF) 1.0000 0.9750 1.0000

I CAIDA + DARPA
/BCT

LSTM
(GD, shuffle)
(10 eps)

1.0000 1.0000 1.0000

III UDP/MMT BNN(AD)
(opt. iteration)

0.9700 0.9400 1.0000

III UDP/MMT LSTM
(AD, shuffle)
(10 eps)

0.9400
(acc. score)

0.9400 0.9600

[11] (2013) Mixed(CAIDA)
/MMT

NFBoost
+cost min.

0.9880 N/A N/A

[13] (2015) CAIDA
/MMT

Adaboost
+RF

0.9989 N/A N/A

[7] (2016) KDD’99 proposed 0.9329 0.9186 N/A

[8] (2016) UDP MLP
(500 max. eps)

0.9900
(acc. score)

0.9000 1.0000

[26] (2017) CAIDA proposed 1.0000 0.9995
N/A

  DARPA 1.0000 1.0000

[22] (2017) KDD’99
/Normalization

proposed 0.9998 0.9940 0.9984

[14] (2017) ISCX 2012/
Normalization

LSTM 0.9799 0.9788 0.9810

CNN LSTM 0.9589 0.9420 0.9753

GRU 0.9679 0.9501 0.9841

[15] (2018) KDD’99 RNN 0.9855

N/A N/A
PCA RNN 0.9859

PCA SVM 0.9853

LSTM 0.9850

[23] (2018) Collected
/MMT

SAE 0.7721
– 0.9703

0.6465
– 0.9535

N/A

[18] (2019) CTU‐13 Botnet & 
ISCX 2012 IDS/
binary string

LSTM
(hidden layer: 0–2)

0.8067
– 0.9367

N/A N/A

[20] (2019) AzScienceNet
/Normalization

Improved CNN
(500 eps)

0.7744 0.8455 0.8923

Improved LSTM
(140 eps)

0.6974 0.7522 0.8865
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in advance. Finding the optimal values of hyperparameters 
related to ML techniques needs further study. In addition, 
more advanced technologies of ML that pertains to time se-
ries data and newly developed statistical models for time se-
ries need to be compared.
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