• Title/Summary/Keyword: flow homogeneity

Search Result 58, Processing Time 0.026 seconds

Parameters Effect on Fabrication of Nuclear Fuel by Plasma Deposition (플라즈마 침적에 의한 핵열료 제조에 미치는 변수들의 영향)

  • Jeong, In-Ha;Bae, Gi-Gwang
    • Korean Journal of Materials Research
    • /
    • v.8 no.9
    • /
    • pp.783-790
    • /
    • 1998
  • New process development of nuclear fuel fabrication for nuclear power plant was attempted by induction plasma technology with yttria-stabilized-zirconia ($\textrm{ZrO}_{2}$-$\textrm{Y}_{2}\textrm{O}_{3}$)powder, similar to $\textrm{UO}_{2}$, in the respect of melting point and physicochemical characteristics. Extent of powder melting was affected greatly by plasma plate power and particle size. Being optimized such as, sheath gas composition, probe position, particle size and spraying distance, dense deposit of 97.91% T.D. with deposition rate 20mm/min was attained at the condition of 120/20$\ell$/min of Ar/$\textrm{H}_{2}$ flow rate, 80kw of plate power, 8cm of probe position, 200Torr of chamber pressure and 18cm of spraying distance. The pellet of 96.5% of theoretical density was formed with homogeneity and nice exterior view at the best condition of deposition experiments, and the possibility of new nuclear pellet fabrication process was confirmed. The main and interrelated effects on deposit density were assessed by ANOVA(Ana1ysis of Variance).

  • PDF

The assessment of the Spatial Variation of the Wind Field using the Meso-velocity Scale and its Contributing Factors (중간 속도 규모를 이용한 바람장의 균질성 평가 및 영향요소 분석)

  • Lee, Seong-Eun;Shin, Sun-Hee;Ha, Kyung-Ja
    • Atmosphere
    • /
    • v.20 no.3
    • /
    • pp.343-353
    • /
    • 2010
  • A regional wind network with complex surface conditions must be designed with sufficient space and time resolution to resolve the local circulations. In this study, the spatial variations of the wind field observed in the Seoul and Jeju regional networks were evaluated in terms of annual, seasons, and months to assess the spatial homogeneity of wind fields within the regional networks. The coherency of the wind field as a function of separation distance between stations indicated that significant coherency was sometimes not captured by the network, as inferred by low correlations between adjacent stations. A meso-velocity scale was defined in terms of the spatial variability of the wind within the network. This problem is predictably most significant with weak winds, dull prevailing wind, clear skies and significant topography. The relatively small correlations between stations imply that the wind at a given point cannot be estimated by interpolating winds from the nearest stations. For the Seoul and Jeju regional network, the meso-velocity scale has typically a same order of magnitude as the speed of the network averaged wind, revealing the large spatial variability of the Jeju network station imply topography and weather. Significant scatter in the relationship between spatial variability of the wind field and the wind speed is thought to be related to thermally-generated flows. The magnitude of the mesovelocity scale was significantly different along separation distance between stations, wind speed, intensity of prevailing wind, clear and cloudy conditions, topography. Resultant wind vectors indicate much different flow patterns along condition of contributing factors. As a result, the careful considerations on contributing factors such as prevailing wind in season, weather, and complex surface conditions with topography and land/sea contrast are required to assess the spatial variations of wind field on a regional network. The results in the spatial variation from the mesovelocity scale are useful to represent the characteristics of regional wind speed including lower surface conditions over the grid scale of large scale atmospheric model.

Evaluation of Water Quality Characteristics in the Nakdong River using Statistical Analysis (통계분석을 이용한 낙동강유역의 수질변화 특성 조사)

  • Choi, Kil Yong;Im, Toe Hyo;Lee, Jae Woon;Cheon, Se Uk
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.11
    • /
    • pp.1157-1168
    • /
    • 2012
  • In this study, we assess changes in water quality trends over time based on certain control measurements in order to identify and analyze the cause of the trend in water quality. The current water pollution in the Nakdong River was analyzed, as it suggests that the significant changes in water quality have occurred in between 2006 and 2010. Based on monthly average data, we have examined for trends of the Nakdong River watershed in water temperature, Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Total Nitrogen (TN), and Total Phosphorus (TP). Moreover, we have investigated seasonal variation of water quality of sites within the Nakdong River Basin by implementing further analyses such as, Correlation Coefficient, Regression Analysis, Hierarchical Clustering Method, and Time Series Analysis on SPSS. Geology and topography of the watershed, controlled by various conditions such as, climate, vegetation, topography, soil, and rain medium, have been affected by the non-homogeneity. Our study suggests that such variables could possibly cause eutrophication problems in the river. One possible way to overcome this particular problem is to lay up a ship on the river by increasing the nasal flow measurement of the Nakdong River during rainy season. Moreover, the water management requires arranging the measurement of the flow in order to secure the river while the numerous construction projects need to be continuously observed. However, the water is not flowing tributary of the reason for the timing to be flowing in a natural state of river water and industrial water intake because agriculture. Therefore, ongoing research is needed in addition to configuration of all observations.

Low Genetic Diversity and Shallow Population Structure of the Japanese Halfbeak Hyporhamphus sajori Revealed from Mitochondrial DNA in the Northeast Asia (Mitochondrial DNA를 이용한 동북아시아 학꽁치 Hyporhamphus sajori의 유전적 다양성과 집단 구조)

  • Gwak, Woo-Seok;Zhang, Qun;Roy, Animesh
    • Korean Journal of Ichthyology
    • /
    • v.31 no.4
    • /
    • pp.187-194
    • /
    • 2019
  • This study was conducted to know the genetic diversity and population structure of Japanese halfbeak (Hyporhamphus sajori) in the Northeast Asia, using mitochondrial DNA control region. In the present study, a total of 70 individuals were collected from three locations of China (Liaoning), Korea (Tongyeong) and Japan (Wakasa Bay), and 47 individuals sequences from three locations of Japan (Wakasa Bay, Toyama Bay and Mikawa Bay) were downloaded from genbank. A total of 7 haplotypes were identified with 7 polymorphic sites from 358 bp length sequences. Haplotype and nucleotide diversity were very low and ranged from 0 to 0.295±0.156 and 0 to 0.0009±0.0011, respectively. Ancestral haplotype was shared by 94% individuals. An extremely low haplotype and nucleotide diversity, and starlike minimum spanning tree indicated that the species have undergone a recent population expansion after bottleneck. Pairwise FST values were low and there was no significant differences among populations suggesting a gene flow among the populations. Dispersal of the eggs with the aid of drifting seaweed and currents might be the major responsible factor for the genetic homogeneity.

Development and Feasibility Study for Phase Contrast MR Angiography at Low Tesla Open-MRI System (저자장 자기공명영상 시스템에서의 위상대조도 혈관조영기법의 개발과 그 유용성에 대한 연구)

  • Lee, Dong-Hoon;Hong, Cheol-Pyo;Lee, Man-Woo;Han, Bong-Soo
    • Progress in Medical Physics
    • /
    • v.23 no.3
    • /
    • pp.177-187
    • /
    • 2012
  • Magnetic resonance angiography (MRA) techniques are widely used in diagnosis of vascular disorders such as hemadostenosis and aneurism. Especially, phase contrast (PC) MRA technique, which is a typical non contrast-enhanced MRA technique, provides not only the anatomy of blood vessels but also flow velocity. In this study, we developed the 2- and 3-dimensional PC MRA pulse sequences for a low magnetic field MRI system. Vessel images were acquired using 2D and 3D PC MRA and the velocities of the blood flow were measured in the superior sagittal sinus, straight sinus and the confluence of the two. The 2D PC MRA provided the good quality of vascular images for large vessels but the poor quality for small ones. Although 3D PC MRA gave more improved visualization of small vessels than 2D PC MRA, the image quality was not enough to be used for diagnosis of the small vessels due to the low SNR and field homogeneity of the low field MRI system. The measured blood velocities were $25.46{\pm}0.73cm/sec$, $24.02{\pm}0.34cm/sec$ and $26.15{\pm}1.50cm/sec$ in the superior sagittal sinus, straight sinus and the confluence of the two, respectively, which showed good agreement with the previous experimental values. Thus, the developed PC MRA technique for low field MRI system is expected to provide the useful velocity information to diagnose the large brain vessels.

Microbial Influence on Soil Properties and Pollutant Reduction in a Horizontal Subsurface Flow Constructed Wetland Treating Urban Runoff (도시 강우유출수 처리 인공습지의 토양특성 및 오염물질 저감에 따른 미생물 영향 평가)

  • Chiny. C. Vispo;Miguel Enrico L. Robles;Yugyeong Oh;Haque Md Tashdedul;Lee Hyung Kim
    • Journal of Wetlands Research
    • /
    • v.26 no.2
    • /
    • pp.168-181
    • /
    • 2024
  • Constructed wetlands (CWs) deliver a range of ecosystem services, including the removal of contaminants, sequestration and storage of carbon, and enhancement of biodiversity. These services are facilitated through hydrological and ecological processes such as infiltration, adsorption, water retention, and evapotranspiration by plants and microorganisms. This study investigated the correlations between microbial populations, soil physicochemical properties, and treatment efficiency in a horizontal subsurface flow constructed wetland (HSSF CW) treating runoff from roads and parking lots. The methods employed included storm event monitoring, water quality analysis, soil sampling, soil quality parameter analysis, and microbial analysis. The facility achieved its highest pollutant removal efficiencies during the warm season (>15℃), with rates ranging from 33% to 74% for TSS, COD, TN, TP, and specific heavy metals including Fe, Zn, and Cd. Meanwhile, the highest removal efficiency was 35% for TOC during the cold season (≤15℃). These high removal rates can be attributed to sedimentation, adsorption, precipitation, plant uptake, and microbial transformations within the CW. Soil analysis revealed that the soil from HSSF CW had a soil organic carbon content 3.3 times higher than that of soil collected from a nearby landscape. Stoichiometric ratios of carbon (C), nitrogen (N), and phosphorus (P) in the inflow and outflow were recorded as C:N:P of 120:1.5:1 and 135.2:0.4:1, respectively, indicating an extremely low proportion of N and P compared to C, which may challenge microbial remediation efficiency. Additionally, microbial analyses indicated that the warm season was more conducive to microorganism growth, with higher abundance, richness, diversity, homogeneity, and evenness of the microbial community, as manifested in the biodiversity indices, compared to the cold season. Pollutants in stormwater runoff entering the HSSF CW fostered microbial growth, particularly for dominant phyla such as Proteobacteria, Actinobacteria, Acidobacteria, and Bacteroidetes, which have shown moderate to strong correlations with specific soil properties and changes in influent-effluent concentrations of water quality parameters.

Quantitative Analysis of Artifactual Perfusion Defects due to the Cutoff Frequencies of Reconstruction Filters in Tc-99m-MIBI Myocardial SPECT Images (Tc-99m-MIBI 심근 SPECT에서 재구성필터의 차단주파수에 의한 인위적 관류결손의 정량적 평가)

  • Kwark, Cheol-Eun;Chung, June-Key;Lee, Myung-Chul
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.2
    • /
    • pp.231-238
    • /
    • 1995
  • Tc-99m-MIBI (Sestamibi) myocardial SPECT along with TI-201 tomographic Imaging has demonstrated wide application and high image quality sufficient for the diagnosis of myocardial perfusion defect, which consequently reflects regional myocardial blood flow. The qualitative values of myocardial SPECT with Tc-99m-MIBI as well ds the quantitative cases depend in some degree on the reconstruction techniques of multiple projections. Filtered backprojection (FBP) Is the common standard method for reconstruction rather than the complicated and time-consuming arithmetic methods. In FBP it is known that the distribution of radioactivity in reconstructed transverse slices varies with the selected litter parameters such as cutoff frequencies and order (Butterworth case) The cutoff frequencies used in clinicAl practice partially remove and decrease the true radioactive distribution and alter the pixel counts, which lead to underestimation of true counts in specific myocardial regions. In this study, we have investigated the effect of cutoff frequencies of reconstruction filter on the artifactually induced perfusion defects, which are often demonstrated near inferior and/or inferoseptal cardiac walls due to the intense hepatic uptake of Tc-99m-MIBI. A computerized method for Identifying the relative degree of artifactual perfusion defect and for comparing those degrees along with the relative amount of hepatic uptake to myocardium was developed and patient images were studied to observe the quantitative degree of underestimation of myocardial perfusion, and to propose some reasonable threshold of cutoff frequency in the diagnosis of perfusion defect quantitatively. We concluded that from the quantitative viewpoint cutoff frequencies may be used as high as possible with the sacrifice of homogeneity of image quality, and those frequencies lower than the common 0.3 Wyquist frequency would reveal severe degradation of radioactive distribution near inferior and/or inferoseptal myocardium when applying Butterworth or low pass filter.

  • PDF

Analysis on Characteristics of Variation in Flood Flow by Changing Order of Probability Weighted Moments (확률가중모멘트의 차수 변화에 따른 홍수량 변동 특성 분석)

  • Maeng, Seung-Jin;Hwang, Ju-Ha
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.5
    • /
    • pp.1009-1019
    • /
    • 2009
  • In this research, various characteristics of South Korea's design flood have been examined by deriving appropriate design flood, using data obtained from careful observation of actual floods occurring in selected main watersheds of the nation. 19 watersheds were selected for research in Korea. The various characteristics of annual rainfall were analyzed by using a moving average method. The frequency analysis was decided to be performed on the annual maximum flood of succeeding one year as a reference year. For the 19 watersheds, tests of basic statistics, independent, homogeneity, and outlier were calculated per period of annual maximum flood series. By performing a test using the LH-moment ratio diagram and the Kolmogorov-Smirnov (K-S) test, among applied distributions of Gumbel (GUM), Generalized Extreme Value (GEV), Generalized Logistic (GLO) and Generalized Pareto (GPA) distribution was found to be adequate compared with other probability distributions. Parameters of GEV distribution were estimated by L, L1, L2, L3 and L4-moment method based on the change in the order of probability weighted moments. Design floods per watershed and the periods of annual maximum flood series were derived by GEV distribution. According to the result of the analysis performed by using variation rate used in this research, it has been concluded that the time for changing the design conditions to ensure the proper hydraulic structure that considers recent climate changes of the nation brought about by global warming should be around the year 2002.

Seasonal Variation and Transport Pattern of Suspended Matters in semiclosed Muan Bay, Southwestern Coast of Korea (반폐쇄된 무안만에서 부유물질의 계절적 변동 및 운반양상)

  • Ryu, Sang-Ock;Kim, Joo-Young;You, Hoan-Su
    • Journal of the Korean earth science society
    • /
    • v.21 no.2
    • /
    • pp.128-136
    • /
    • 2000
  • To understand the variation and transport pattern of suspended matters, salinity, tidal current and suspended matters in semiclosed Muan Bay have been monitored during winter and summer. The suspended matters show considerably seasonal variations with low concentration and homogeneity in the water column during winter season, but with high concentration and layering during summer season. Particularly, during summer season, the freshwater and the suspended matters influxed by the gate operation of the Youngsan River sea-dike are transported northward in accordance with the would flow into the inner-bay by relaxed flood currents after the construction of sea-dike and sea-walls in the Mokpo coastal zone. But, in the south bay-mouth, those matters outflow through the bay-mouth, resulting from tidal ebb dominance and asymmetry in the west bay-mouth. The residual suspended matter flux is much higher in the south bay-mouth(-0.0955kg/m ${\cdot}$ sec) than that of west bay-mouth(0.0078kg1m ${\cdot}$ sec). Accordingly, The Muan Bay is interpreted as erosion-dominated environments, and the erosion somewhat progresses in the intertidal flat of the bay.

  • PDF

Behavior Characteristics of Cement Bentonite Impervious Walls Related to Mixing Methods and Curing Time (강화벤토나이트 차수벽체의 배합방법 및 양생일에 따른 거동 특성)

  • Hwang, Jungsoon;Kim, Seungwook;Jung, Jungi;Lee, Seungjoo;Oh, Byeungsam;Baek, Seungcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.12
    • /
    • pp.45-54
    • /
    • 2016
  • In this study, the construction method of new underground continuos impervious wall that the bentonite slurry keeps the stability of excavated trench and the mixture of cement and bentonite plays a role as a constituent of impervious wall in the trench. The merit of homogeneity of the method so called as a cement-bentonite slurry wall enables to accurately make an estimation of hydraulic conductivity of the walls compared with that by other general grouting methods and to verify their waterproof efficiency without difficulty at the design stage. The use of cement-bentonite slurry walls for the containment of groundwater flow has also proven a cost-effective impervious wall technology by employing the simple combination of construction equipments and easy and fast construction procedures. The engineering characteristics of cement-bentonite impervious wall obtained by carrying out the laboratory experiments under various conditions. This study reveals the effect of variation of constituent materials and their mixing methods (Water-Cement-Bentonite) on the engineering characteristics of a composition. Also, this study makes some recommendations on the optimum mixing ratio and mixing sequence for the best quality at the site. That is the most important factors to estimate the construction cost and design of the technique. The comparison is lastly made to evaluate the effect of ordinary Portland and blast furnace slag cement as a bonding material on the behavior of impervious walls.