Browse > Article
http://dx.doi.org/10.35399/ISK.31.4.1

Low Genetic Diversity and Shallow Population Structure of the Japanese Halfbeak Hyporhamphus sajori Revealed from Mitochondrial DNA in the Northeast Asia  

Gwak, Woo-Seok (Department of Marine Biology and Aquaculture, The Institute of Marine Industry Gyeongsang National University)
Zhang, Qun (Institute of Hydrobiology, Jinan University)
Roy, Animesh (Department of Marine Biology and Aquaculture, The Institute of Marine Industry Gyeongsang National University)
Publication Information
Korean Journal of Ichthyology / v.31, no.4, 2019 , pp. 187-194 More about this Journal
Abstract
This study was conducted to know the genetic diversity and population structure of Japanese halfbeak (Hyporhamphus sajori) in the Northeast Asia, using mitochondrial DNA control region. In the present study, a total of 70 individuals were collected from three locations of China (Liaoning), Korea (Tongyeong) and Japan (Wakasa Bay), and 47 individuals sequences from three locations of Japan (Wakasa Bay, Toyama Bay and Mikawa Bay) were downloaded from genbank. A total of 7 haplotypes were identified with 7 polymorphic sites from 358 bp length sequences. Haplotype and nucleotide diversity were very low and ranged from 0 to 0.295±0.156 and 0 to 0.0009±0.0011, respectively. Ancestral haplotype was shared by 94% individuals. An extremely low haplotype and nucleotide diversity, and starlike minimum spanning tree indicated that the species have undergone a recent population expansion after bottleneck. Pairwise FST values were low and there was no significant differences among populations suggesting a gene flow among the populations. Dispersal of the eggs with the aid of drifting seaweed and currents might be the major responsible factor for the genetic homogeneity.
Keywords
Hyporhamphus sajori; mtDNA control region; genetic diversity; population structure; egg dispersal;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei and S. Kumar. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol., 28: 2731-2739.   DOI
2 Tang, W.C. 1987. Chinese medicinal materials from the sea. Abstract, Chin. Med., 1: 571-600.
3 Kim, Y.S., K.H. Han, C.B. Kang and J.B. Kim. 2004. Commercial Fishes of the Coastal and Offshore Waters in Korea. 2nd ed. Hangul, Busan, Korea. 333pp. (in Korean)
4 Kim, Y.U., J.G. Myoung and S.O. Choi. 1984. Eggs development and larvae of the horn fish, Hemiramphus sajori Temminck et Schlegel. Bull. Korean. Fish. Soc., 17: 125-131. (in Korean)
5 Kitanishi, S., M. Nishio, S. Sagawa, K. Uehara, R. Ogawa, T. Yokoyama, K. Ikeya and K. Edo. 2013. Strong population genetic structure and its implications for the conservation and management of the endangered Itasenpara bitterling. Conserv. Genet., 14: 901-906.   DOI
6 Kocher, T.D., W.K. Thomas, A. Meyer, S.V. Edwards, S. Paabo, F.X. Villablanca and A.C. Wilson. 1989. Dynamics of mitochondrial DNA evolution in anmals: amplication and sequencing with conserved primers. Proc. Natl. Acad. Sci. USA, 86: 6196-6200.   DOI
7 Laikre, L., S. Palm and N. Ryman. 2005. Genetic Population Structure of Fishes: Implications for Coastal Zone Management. AMBIO, 34: 111-119.   DOI
8 Meyer, A., T.D. Kocher, P. Basasibwaki and A.C. Wilson. 1990. Monophyletic origin of Lake Victoria cichlid fishes suggested by mitochondrial DNA sequences. Nature, 347: 550-553.   DOI
9 Nesbo, C.L., M.O. Arab and K.S. Jakobson. 1998. Heteroplasmy, length and sequence variation in the mtDNA control regions of three percid fish species (Perca fluviatilis, Acerina cernua, Stizostedion lucioperca). Genetics, 148: 1907-1919.   DOI
10 Teacher, A.G.F. and D.J. Griffiths. 2011. Hapstar: automated haplotype network layout and visualization. Mol. Ecol. Resour., 11: 151-153.   DOI
11 Xu, X. and M. Oda. 1999. Surface-water evolution of the eastern East China Sea during the last 36,000 years. Mar. Geol., 156: 285-304.   DOI
12 Nohara, K., H. Takeuchi, T. Tsuzaki, N. Suzuki, O. Tominaga and T. Seikai. 2010. Genetic variability and stock structure of red tilefish Branchiostegus japonicus inferred from mtDNA sequence analysis. Fisheries Sci., 76: 75-81.   DOI
13 Palumbi, S.R. 1994. Genetic divergence, reproductive isolation, and marine speciation. Annu. Rev. Ecol. Evol. Syst., 25: 547-572.   DOI
14 Thompson, J.D., D.G. Higgins and T.J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic. Acids. Res., 22: 4673-4680.   DOI
15 Tsuji, T. and T. Sadakata. 2000. Present status of the halfbeak fisheries in Japan. Bull. Ishikawa Prefect. Fish. Res. Cent., 2: 1-11. (in Japanese)
16 Xu, L.L., D.X. Wu, X.P. Lin and C. Ma. 2009. The study of the Yellow Sea Warm Current and its seasonal variability. J. Hydrodyn., 21: 159-165.   DOI
17 Yan, S., G. Catanese, L. Christopher, C.L. Brown, M. Wang, C. Yang and T. Yang. 2015. Phylogeographic study on the chub mackerel (Scomber japonicus) in the Northwestern Pacific indicates the late Pleistocene population isolation. Mar. Ecol., 36: 753-765.   DOI
18 Yu, H.J., Y. Kai and J.K. Kim. 2016. Genetic diversity and population structure of Hyporhamphus sajori (Beloniformes: Hemiramphidae) inferred from mtDNA control region and msDNA markers. J. Fish. Biol., 89: 2607-2624.   DOI
19 Zhang, H., T. Yanagimoto, X. Zhang, N. Song and T. Gao. 2016. Lack of population genetic differentiation of a marine ovoviviparous fish Sebastes schlegelii in Northwestern Pacific. Mitochondrial DNA Part A, 27: 1748-1754.
20 Aquadro, C.F. and B.D. Greenberg. 1983. Human mitochondrial DNA variation and evolution: analysis of nucleotide sequences from seven individuals. Genetics, 103: 287-312.   DOI
21 Excoffier, L. and H.E.L. Lischer. 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour., 10: 564-567.   DOI
22 von der Heyden, S., M.R. Lipinski and C.A. Matthee. 2010. Remarkably low mtDNA control region diversity in an abundant demersal fish. Mol. Phylogenet. Evol., 55: 1183-1188.   DOI
23 Kim, I.S., Y. Choi, C.L. Lee, Y.J. Lee, B.J. Kim and J.H. Kim. 2005. Illustrated Book of Korean Fishes. Kyo-Hak Publishing Co. Seoul, 615pp. (in Korean)
24 Avise, J.C. 2000. Phylogeography: the History and Formation of Species. Cambridge, MA: Harvard University Press.
25 Canino, M.F., I.B. Spies, S.A. Lowe and W.S. Grant. 2010. Highly discordant nuclear and mitochondrial dna diversities in atka mackerel. Mar. Coast. Fish., 2: 375-387.   DOI
26 Domitsu, H. and M. Oda. 2006. Linkages between surface and deep circulations in the southern Japan Sea during the last 27,000 years: evidence from planktic foraminiferal assemblages and stable isotope records. Mar. Micropaleontol., 61: 155-170.   DOI
27 Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39: 783-791.   DOI
28 Gorbarenko, S.A. and J.R. Southon. 2000. Detailed Japan Sea paleoceanography during the last 25 kyr: constraints from AMS dating and ${\delta}^{18}O$ of planktonic foraminifera. Palaeogeogr. Palaeoclimatol. Palaeoecol., 156: 177-193.   DOI
29 Grant, W.A.S. and B.W. Bowen. 1998. Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. J. Hered., 89: 415-426.   DOI
30 Gwak, W.S. and K. Nakayama. 2011. Genetic variation and population structure of the Pacific cod Gadus macrocephalus in Korean waters revealed by mtDNA and msDNA markers. J. Fish. Sci., 77: 945-952.   DOI
31 Hauser, L. and G.R. Carvalho. 2008. Paradigm shifts in marine genetics: ugly hypotheses slain by beautiful facts. Fish. Fish., 9: 333-362.   DOI
32 Saitou, N. and M. Nei. 1987. The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol., 4: 406-425.
33 Park, H.S., C.G. Kim, S. Kim, Y.J. Park, H.J. Choi, Z. Xiao, J. Li, Y. Xiao and Y.H. Lee. 2018. Population Genetic Structure of Rock Bream (Oplegnathus fasciatus Temminck & Schlegel, 1884) Revealed by mtDNA COI Sequence in Korea and China. Ocean Sci. J., 53: 261-274.   DOI
34 Park, Y.A., B.K. Khim and S. Zhao. 1994. Sea level fluctuation in the Yellow Sea basin. J. Korean Soc. of Oceano., 29: 42-49.
35 Roldan, M.I., R.G. Perrotta, M. Cortey and C. Pla. 2000. Molecular and morphologic approaches to discrimination of variability patterns in chub mackerel, Scomber japonicus. J. Exp. Mar. Biol. Ecol., 253: 63-74.   DOI
36 Selkoe, K. and R.J. Toonen. 2011. Marine connectivity: a new look at pelagic larval duration and genetic metrics of dispersal. Mar. Ecol. Prog. Ser., 436: 291-305.   DOI
37 Slatkin, M. 1985. Gene flow in natural populations. Annu. Rev. Ecol. Syst., 16: 393-430.   DOI
38 Slatkin, M. and R.R. Hudson. 1991. Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics, 129: 555-562.   DOI
39 Sun, P. and B.J. Tang. 2018. Low mtDNA variation and shallow population structure of the Chinese pomfret Pampus chinensis along the China coast. J. Fish. Biol., 92: 214-228.   DOI