DOI QR코드

DOI QR Code

Low Genetic Diversity and Shallow Population Structure of the Japanese Halfbeak Hyporhamphus sajori Revealed from Mitochondrial DNA in the Northeast Asia

Mitochondrial DNA를 이용한 동북아시아 학꽁치 Hyporhamphus sajori의 유전적 다양성과 집단 구조

  • Gwak, Woo-Seok (Department of Marine Biology and Aquaculture, The Institute of Marine Industry Gyeongsang National University) ;
  • Zhang, Qun (Institute of Hydrobiology, Jinan University) ;
  • Roy, Animesh (Department of Marine Biology and Aquaculture, The Institute of Marine Industry Gyeongsang National University)
  • 곽우석 (국립경상대학교 해양생물교육연구센터) ;
  • ;
  • Received : 2019.11.18
  • Accepted : 2019.12.24
  • Published : 2019.12.31

Abstract

This study was conducted to know the genetic diversity and population structure of Japanese halfbeak (Hyporhamphus sajori) in the Northeast Asia, using mitochondrial DNA control region. In the present study, a total of 70 individuals were collected from three locations of China (Liaoning), Korea (Tongyeong) and Japan (Wakasa Bay), and 47 individuals sequences from three locations of Japan (Wakasa Bay, Toyama Bay and Mikawa Bay) were downloaded from genbank. A total of 7 haplotypes were identified with 7 polymorphic sites from 358 bp length sequences. Haplotype and nucleotide diversity were very low and ranged from 0 to 0.295±0.156 and 0 to 0.0009±0.0011, respectively. Ancestral haplotype was shared by 94% individuals. An extremely low haplotype and nucleotide diversity, and starlike minimum spanning tree indicated that the species have undergone a recent population expansion after bottleneck. Pairwise FST values were low and there was no significant differences among populations suggesting a gene flow among the populations. Dispersal of the eggs with the aid of drifting seaweed and currents might be the major responsible factor for the genetic homogeneity.

학꽁치(Hyporhamphus sajori)의 유전적 다양성과 집단구조를 조사하기 위해 동북아시아에서 시료를 채집하여 mitochondrial DNA control region (mtDNA CR)을 분석하였다. 시료는 중국(Liaoning), 한국(통영), 일본(Wakasa Bay) 3곳에서 총 70개체를 채집했고, 일본 3곳(Wakasa Bay, Toyama Bay and Mikawa Bay)에서 분석된 47개체의 mtDNA CR 염기서열을 Genbank에서 다운로드했다. 분석결과 총 358 bp가 나타났고, 7개의 변이와 함께 haplotype이 7개 확인되었다. Haplotype diversity과 nucleotide diversity는 각각 0~0.295±0.156 및 0~0.0009±0.0011이고, main haplotype을 94%의 개체가 공유했다. 매우 낮은 haplotype diversity와 nucleotide diversity 그리고 starlike minimum spanning tree는 집단이 최근에 병목현상을 거친 후, 팽창되었음을 나타낸다. 집단 간에 Pairwise FST 값은 낮고 유의하지 않은 것으로 나타났고, 이것은 집단 간 gene flow가 있음을 시사한다. 학꽁치의 genetic homogenity는 부유조와 해류가 주요 원인으로 생각된다.

Keywords

References

  1. Aquadro, C.F. and B.D. Greenberg. 1983. Human mitochondrial DNA variation and evolution: analysis of nucleotide sequences from seven individuals. Genetics, 103: 287-312. https://doi.org/10.1093/genetics/103.2.287
  2. Avise, J.C. 2000. Phylogeography: the History and Formation of Species. Cambridge, MA: Harvard University Press.
  3. Canino, M.F., I.B. Spies, S.A. Lowe and W.S. Grant. 2010. Highly discordant nuclear and mitochondrial dna diversities in atka mackerel. Mar. Coast. Fish., 2: 375-387. https://doi.org/10.1577/C09-024.1
  4. Domitsu, H. and M. Oda. 2006. Linkages between surface and deep circulations in the southern Japan Sea during the last 27,000 years: evidence from planktic foraminiferal assemblages and stable isotope records. Mar. Micropaleontol., 61: 155-170. https://doi.org/10.1016/j.marmicro.2006.06.006
  5. Excoffier, L. and H.E.L. Lischer. 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour., 10: 564-567. https://doi.org/10.1111/j.1755-0998.2010.02847.x
  6. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39: 783-791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x
  7. Gorbarenko, S.A. and J.R. Southon. 2000. Detailed Japan Sea paleoceanography during the last 25 kyr: constraints from AMS dating and ${\delta}^{18}O$ of planktonic foraminifera. Palaeogeogr. Palaeoclimatol. Palaeoecol., 156: 177-193. https://doi.org/10.1016/S0031-0182(99)00137-6
  8. Grant, W.A.S. and B.W. Bowen. 1998. Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. J. Hered., 89: 415-426. https://doi.org/10.1093/jhered/89.5.415
  9. Gwak, W.S. and K. Nakayama. 2011. Genetic variation and population structure of the Pacific cod Gadus macrocephalus in Korean waters revealed by mtDNA and msDNA markers. J. Fish. Sci., 77: 945-952. https://doi.org/10.1007/s12562-011-0403-2
  10. Hauser, L. and G.R. Carvalho. 2008. Paradigm shifts in marine genetics: ugly hypotheses slain by beautiful facts. Fish. Fish., 9: 333-362. https://doi.org/10.1111/j.1467-2979.2008.00299.x
  11. von der Heyden, S., M.R. Lipinski and C.A. Matthee. 2010. Remarkably low mtDNA control region diversity in an abundant demersal fish. Mol. Phylogenet. Evol., 55: 1183-1188. https://doi.org/10.1016/j.ympev.2009.09.018
  12. Kim, I.S., Y. Choi, C.L. Lee, Y.J. Lee, B.J. Kim and J.H. Kim. 2005. Illustrated Book of Korean Fishes. Kyo-Hak Publishing Co. Seoul, 615pp. (in Korean)
  13. Kim, Y.S., K.H. Han, C.B. Kang and J.B. Kim. 2004. Commercial Fishes of the Coastal and Offshore Waters in Korea. 2nd ed. Hangul, Busan, Korea. 333pp. (in Korean)
  14. Kim, Y.U., J.G. Myoung and S.O. Choi. 1984. Eggs development and larvae of the horn fish, Hemiramphus sajori Temminck et Schlegel. Bull. Korean. Fish. Soc., 17: 125-131. (in Korean)
  15. Kitanishi, S., M. Nishio, S. Sagawa, K. Uehara, R. Ogawa, T. Yokoyama, K. Ikeya and K. Edo. 2013. Strong population genetic structure and its implications for the conservation and management of the endangered Itasenpara bitterling. Conserv. Genet., 14: 901-906. https://doi.org/10.1007/s10592-013-0470-2
  16. Kocher, T.D., W.K. Thomas, A. Meyer, S.V. Edwards, S. Paabo, F.X. Villablanca and A.C. Wilson. 1989. Dynamics of mitochondrial DNA evolution in anmals: amplication and sequencing with conserved primers. Proc. Natl. Acad. Sci. USA, 86: 6196-6200. https://doi.org/10.1073/pnas.86.16.6196
  17. Laikre, L., S. Palm and N. Ryman. 2005. Genetic Population Structure of Fishes: Implications for Coastal Zone Management. AMBIO, 34: 111-119. https://doi.org/10.1579/0044-7447-34.2.111
  18. Meyer, A., T.D. Kocher, P. Basasibwaki and A.C. Wilson. 1990. Monophyletic origin of Lake Victoria cichlid fishes suggested by mitochondrial DNA sequences. Nature, 347: 550-553. https://doi.org/10.1038/347550a0
  19. Nesbo, C.L., M.O. Arab and K.S. Jakobson. 1998. Heteroplasmy, length and sequence variation in the mtDNA control regions of three percid fish species (Perca fluviatilis, Acerina cernua, Stizostedion lucioperca). Genetics, 148: 1907-1919. https://doi.org/10.1093/genetics/148.4.1907
  20. Nohara, K., H. Takeuchi, T. Tsuzaki, N. Suzuki, O. Tominaga and T. Seikai. 2010. Genetic variability and stock structure of red tilefish Branchiostegus japonicus inferred from mtDNA sequence analysis. Fisheries Sci., 76: 75-81. https://doi.org/10.1007/s12562-009-0188-8
  21. Palumbi, S.R. 1994. Genetic divergence, reproductive isolation, and marine speciation. Annu. Rev. Ecol. Evol. Syst., 25: 547-572. https://doi.org/10.1146/annurev.es.25.110194.002555
  22. Park, H.S., C.G. Kim, S. Kim, Y.J. Park, H.J. Choi, Z. Xiao, J. Li, Y. Xiao and Y.H. Lee. 2018. Population Genetic Structure of Rock Bream (Oplegnathus fasciatus Temminck & Schlegel, 1884) Revealed by mtDNA COI Sequence in Korea and China. Ocean Sci. J., 53: 261-274. https://doi.org/10.1007/s12601-018-0009-z
  23. Park, Y.A., B.K. Khim and S. Zhao. 1994. Sea level fluctuation in the Yellow Sea basin. J. Korean Soc. of Oceano., 29: 42-49.
  24. Roldan, M.I., R.G. Perrotta, M. Cortey and C. Pla. 2000. Molecular and morphologic approaches to discrimination of variability patterns in chub mackerel, Scomber japonicus. J. Exp. Mar. Biol. Ecol., 253: 63-74. https://doi.org/10.1016/S0022-0981(00)00244-6
  25. Saitou, N. and M. Nei. 1987. The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol., 4: 406-425.
  26. Selkoe, K. and R.J. Toonen. 2011. Marine connectivity: a new look at pelagic larval duration and genetic metrics of dispersal. Mar. Ecol. Prog. Ser., 436: 291-305. https://doi.org/10.3354/meps09238
  27. Slatkin, M. 1985. Gene flow in natural populations. Annu. Rev. Ecol. Syst., 16: 393-430. https://doi.org/10.1146/annurev.es.16.110185.002141
  28. Slatkin, M. and R.R. Hudson. 1991. Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics, 129: 555-562. https://doi.org/10.1093/genetics/129.2.555
  29. Sun, P. and B.J. Tang. 2018. Low mtDNA variation and shallow population structure of the Chinese pomfret Pampus chinensis along the China coast. J. Fish. Biol., 92: 214-228. https://doi.org/10.1111/jfb.13515
  30. Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei and S. Kumar. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol., 28: 2731-2739. https://doi.org/10.1093/molbev/msr121
  31. Tang, W.C. 1987. Chinese medicinal materials from the sea. Abstract, Chin. Med., 1: 571-600.
  32. Teacher, A.G.F. and D.J. Griffiths. 2011. Hapstar: automated haplotype network layout and visualization. Mol. Ecol. Resour., 11: 151-153. https://doi.org/10.1111/j.1755-0998.2010.02890.x
  33. Thompson, J.D., D.G. Higgins and T.J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic. Acids. Res., 22: 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  34. Tsuji, T. and T. Sadakata. 2000. Present status of the halfbeak fisheries in Japan. Bull. Ishikawa Prefect. Fish. Res. Cent., 2: 1-11. (in Japanese)
  35. Xu, L.L., D.X. Wu, X.P. Lin and C. Ma. 2009. The study of the Yellow Sea Warm Current and its seasonal variability. J. Hydrodyn., 21: 159-165. https://doi.org/10.1016/S1001-6058(08)60133-X
  36. Xu, X. and M. Oda. 1999. Surface-water evolution of the eastern East China Sea during the last 36,000 years. Mar. Geol., 156: 285-304. https://doi.org/10.1016/S0025-3227(98)00183-2
  37. Yan, S., G. Catanese, L. Christopher, C.L. Brown, M. Wang, C. Yang and T. Yang. 2015. Phylogeographic study on the chub mackerel (Scomber japonicus) in the Northwestern Pacific indicates the late Pleistocene population isolation. Mar. Ecol., 36: 753-765. https://doi.org/10.1111/maec.12267
  38. Yu, H.J., Y. Kai and J.K. Kim. 2016. Genetic diversity and population structure of Hyporhamphus sajori (Beloniformes: Hemiramphidae) inferred from mtDNA control region and msDNA markers. J. Fish. Biol., 89: 2607-2624. https://doi.org/10.1111/jfb.13152
  39. Zhang, H., T. Yanagimoto, X. Zhang, N. Song and T. Gao. 2016. Lack of population genetic differentiation of a marine ovoviviparous fish Sebastes schlegelii in Northwestern Pacific. Mitochondrial DNA Part A, 27: 1748-1754.