• Title/Summary/Keyword: flow field characteristics

Search Result 1,759, Processing Time 0.034 seconds

Effect of Chamber Configuration on Combustion Characteristic Velocity of Full-scale Combustion Chamber (실물형 연소기의 형상에 따른 연소특성속도 비교)

  • Kim, Jong-Gyu;Han, Yeoung-Min;Ahn, Kyu-Bok;Kim, Mun-Ki;Seo, Seong-Hyeon;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.149-152
    • /
    • 2008
  • Effects of chamber configuration on combustion characteristic velocity of full-scale combustion chamber for 30-tonf-class liquid rocket engine were studied. The configurations of combustion chamber are ablative and channel cooling chamber (${\varepsilon}$=3.2) which have detachable mixing head, and single body regenerative cooling chamber which has nozzle expansion ratio of 3.5 and 12, respectively. The combustion chambers have chamber pressure of 53${\sim}$60 bar and propellant mass flow rate of 89 kg/s, and the injectors of all combustion chamber have recess number 1.0 and double-swirl characteristics. The hot firing test results at design point show that the combustion characteristic velocity of the regenerative cooling chamber which has nozzle expansion ratio of 12 is higher than that of other combustion chambers. The reasons for the above result are the increases of combustion pressure and enthalpy of kerosene which is heated due to cooling of the chamber wall before injection into the combustion field.

  • PDF

Numerical Simulation on Hydrodynamic Characterization Changes Associated with the Construction of Dikes and Dredging Operations in Saemangeum Lake (새만금호 내 방수제 공사 및 준설에 의한 수리동역학적 특성 변화 수치 모델링)

  • Oh, Chan-Sung;Choi, Jung-Hoon;Cho, Young-Kweon
    • Journal of Environmental Science International
    • /
    • v.22 no.9
    • /
    • pp.1115-1129
    • /
    • 2013
  • The study area is located on the western coast, and the inner development construction has been ongoing since 2011. The purposes of current study are to effectively simulate and quantitatively predict a temporal and spatial distributions of water temperature and salinity due to the stages of inner development construction in saemangeum reclaimed area. The transient-state numerical modeling using EFDC model is done, and the numerical simulation results are validated reasonably by repetitive numerical model calibration procedures with respect to field measurements of water temperature and salinity. The spatial distributions of water temperature and salinity show similar trends before and after construction of the dikes. In spring season, the salinity has maximum value of 21 psu, while, in summer season, the salinity shows 7 psu in a whole modeling domain. Thus, it is clearly observed that salt water is replaced by freshwater. However, the salinity and temperature reach their initial conditions at the end of the year. The salinity after construction of the dikes is lower than that before construction of them at Mankyeong area. On the other hands, after construction of the dikes, the salinity after dredging operations is higher than that before dredging. Because drastical increasing of water volume in Saemangeum Lake leads to increasing of stagnation time at bottom layer, and salt water is easily intruded to the two estuaries. Therefore, it may be concluded that hydrodynamic characteristics on Saemangeum are dominated by either Mankyeong and Dongjin discharge or sluice gates in/out-flow amounts, and thus they must be properly considered when rigorous and reasonable predictions of water temperature and salinity according to the stages of inner development construction.

A Numerical Study on Hydraulic Behavior in a Fractured Rock Medium with Hydromechanical Interaction (수리역학적 상호작용을 고려한 균열암반매질에서의 수리학적 거동에 대한 수치적 연구)

  • Jeong, Woochang;Park, Youngjin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.2
    • /
    • pp.61-68
    • /
    • 2009
  • This paper presents the numerical investigation for the hydraulic behavior of a fractured rock mass with a hydromechanical interaction which may be considered during the in-situ hydraulic injection test. These experiments consist in a series of flow meter injection tests for fractures existing along an open hole section installed in a borehole, and experimental results are applied for testing a numerical model developed to the analysis and prediction of such hydromechanical interactions. Field experimental results show that conductive fractures form a dynamic and interdependent network, that individual fractures cannot be adequately modeled as independent systems, that new fluid intaking zones generate when pore pressure exceeds the minimum principal stress magnitude in that borehole, and that pore pressures much larger than this minimum stress can be further supported by the circulated fractures. In this study, these characteristics are investigated numerically how to influence the morphology of the natural fracture network in a rock mass by using a discrete fracture ntework model.

  • PDF

A Study on Selected Transverse Bed Slope Models in Channel Bend (유로만곡부의 횡방향 하상경사 산정 모형에 관한 연구)

  • Song, Jai Woo;Choi, In Ho;Kim, Ji Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.6
    • /
    • pp.1395-1404
    • /
    • 1994
  • Transverse bed slope in bend is a subject of scientific investigation since it provides the necessary information for channel design and protection of hydraulic structures (bank, bridge, etc), and study of river morphology. In this paper, selected models were examined and compared for the value of prediction of the transverse bed slope in curved alluvial channels(project area), by using field data, and fitting model was proposed. All models that related the local transverse bed slope to mean flow characteristics were alike in the sense that they predicted the local transverse bed slope to be proportional to the ratio between depth and radius of curvature. The difference among the models was related with the factor of proportionality, K. Also, measured transverse bed slope was correlated to mean velocity, maximum depth, and density Froude number in channel bend. In this paper selected models were compared for the prediction of the transverse bed slope using Odgaard's experiment (obtained in Sacramento River bend), so Odgaard89 model was closely related with real transverse bed slope.

  • PDF

Three Dimensional Vortex Behavior of LEX Delta Wing by Dynamic Stereo PIV (Dynamic Stereo PIV에 의한 델타형 날개에서의 3차원 와류 유동에 관한 연구)

  • Lee Hyun;Kim Mi-Young;Choi Jang-Woon;Choi Min-Seon;Lee Young-Ho
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.39-42
    • /
    • 2003
  • Leading edge extension(LEX) in a highly swept shape applied to a delta wing features the modern air-fighters. The LEX vortices generated upon the upper surface of the wing at high angle of attack enhance the lift force of the delta wing by way of increased negative suction pressure over the surfaces. The present 3-D stereo PIV includes the Identification of 2-D cross-correlation equation, stereo matching of 2-D velocity vectors of two cameras, accurate calculation of 3-D velocity vectors by homogeneous coordinate system, removal of error vectors by a statistical method followed by a continuity equation criterion and so on. A delta wing model with or without LEX was immersed in a circulating water channel. Two high-resolution, high-speed digital cameras$(1280pixel\times1024pixel)$ were used to allow the time-resolved animation work. The present dynamic stereo PIV represents the complicated vortex behavior, especially, in terms of time-dependent characteristics of the vortices at given measuring sections. Quantities such as three velocity vector components, vorticity and other flow information can be easily visualized via the 3D time-resolved post-processing to make the easy understanding of the LEX effect or vortex emerging and collapse which are important phenomena occurring in the field of delta wing aerodynamics.

  • PDF

A Review of the Possible Causes of Negative Source Impedance in Fluid Machines (유체기계에 있어서 부의 음원 임피던스의 원인에 관한 고찰)

  • ;Keith S. Peat
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.76-82
    • /
    • 2001
  • Most fluid machines can be considered as periodic noise sources when operated under constant conditions, which allows for a frequency domain representation of the source and the associated acoustic field In the duct. In such a representation, the source is characterized by frequency-dependent values of both strength and impedance. Although knowledge of these values can be gained by either experimentation or by modeling, one-port acoustic characteristics of an in-duct source with high flow velocity, high temperature, and high sound level can be measured only by the multiload method using an overdetermined set of open pipes with different lengths as applied loads. However, the problem is that negative source resistances have been often measured. This paper reviews the possible causes of the problem, with reference to experimental and theoretical results, in an attempt to clarify the issue. A new interpretation is given for the violation of basic assumptions and the defect in the algorithm of multiload method. The major cause and mechanism of the problem is due to the violation of time invariance assumption of the source and the load impedance can seriously affect the final measured result of source impedance.

  • PDF

The Characteristics of Structure of Warm Eddy Observed to the Northwest of Ullungdo in 1992 (1992년 울릉도 북서부해역에서 관측된 난수성 소용돌이의 구조특성)

  • 신홍렬;변상경
    • 한국해양학회지
    • /
    • v.30 no.1
    • /
    • pp.39-56
    • /
    • 1995
  • A warm eddy was continuously observed to the east of Sokcho, Korea from March to June 1992. This warm eddy had been formed in 1991, wintered to the east of Sokcho, and moved northward a little during April-June 1992. The diameter and the depth of the eddy were respectively about 160 km and about 330 m in March. The homogeneous (mixed) layer of 10$^{\circ}C$ and 34.2 psu water was found at the upper layer with the maximum size of about 130 km and maximum depth of about 230 m in March. The size of the eddy and homogeneous layer decreased in June. Maximum current velocity of the eddy was about 65 cm/s at the surface layer and exceeded20 cm/s at 200 m depth. It is shown that the flow field was nearly in geostrophic balance, but there was a little difference in the current velocity between ADCP and geostrophic calculation in June. The surface velocity of the East Korean Warm Current(EKWC) was 50∼70cm/s which was very similar to the northward current velocity of the eddy. The EKWC water appeared in the layer upper than 200 m depth.

  • PDF

Phytoplankton Distribution in the Eastern Part of the Yellow Sea by the Formation of Tidal Front and Upwelling during Summer (황해 동부 해역에서 하계에 조석전선과 용승에 의한 식물플랑크톤군집 분포)

  • Lee, Young-Ju;Choi, Joong-Ki;Shon, Jae-Kyoung
    • Ocean and Polar Research
    • /
    • v.34 no.2
    • /
    • pp.111-123
    • /
    • 2012
  • To understand the phytoplankton community in the eastern part of the Yellow Sea (EYS), in the summer, field survey was conducted at 25 stations in June 2009, and water samples were analyzed using a epifluorescence microscopy, flow cytometry and HPLC method. The EYS could be divided into four areas by a cluster analysis, using phytoplankton group abundances: coastal mixing area, Anma-do area, transition water, and the central Yellow Sea. In the coastal mixing area, water column was well mixed vertically, and phytoplankton was dominated by diatoms, chrysophytes, dinoflagellates and nanoflagellates, showing high abundance ($>10^5\;cells\;l^{-1}$). In Anma-do coastal waters characterized by high dominance of dinoflagellates, high phytoplankton abundance and biomass separated from other coastal mixing area. The southeastern upwelling area was expanded from Jin-do to Heuksan-do, by a tidal mixing and coastal upwelling in the southern area of Manjae-do, and phytoplankton was dominated by benthic diatoms, nanoflagellates and Synechococcus group in this area. Phytoplankton abundance and biomass dominated by pico- and nanophytoplankton were low values in the transition waters and the central Yellow Sea. In the surface of the central Yellow Sea, high dominance of photosynthetic pigments, 19'-hexanoyloxyfucoxanthin and zeaxanthin implies that haptophytes and cyanobacteria could be the dominant group during the summer. These results indicate that the phytoplankton communities in the EYS were significantly affected by the formation of tidal front, thermal stratification, and coastal upwelling showing the differences of physical and chemical characteristics during the summer.

Numerical Simulation of Tsunami Force Acting on Onshore Bridge (for Tsunami Bore) (연안교량에 작용하는 지진해일파력에 관한 수치시뮬레이션(단파의 경우))

  • Lee, Kwang-Ho;Woo, Kyung-Hwan;Kim, Do-Sam;Jeong, Ik-Han
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.1
    • /
    • pp.46-61
    • /
    • 2017
  • In the present work, the interaction analysis between tsunami bore and onshore bridge is approached by a numerical method, where the tsunami bore is generated by difference of upstream side and downstream side water levels. Numerical simulation in this paper was carried out by TWOPM-3D(three-dimensional one-field model for immiscible two-phase flows), which is based on Navier-Stokes solver. In order to verify the applicability of force acting on an onshore bridge, numerical results and experimental results were compared and analyzed. From this, we discussed the characteristics of horizontal force and vertical force(uplift force and downward force) changes including water level and velocity change due to the tsunami bore strength, water depth, onshore bridge form and number of girder. Furthermore, It was revealed that the entrained air in the fluid flow highly affected the vertical force.

Study on Hydraulic Fracturing in Transverse Isotropic Rock Using Bonded Particle Model (입자결합모델을 이용한 횡등방성 암석에서의 수압파쇄 특성 연구)

  • Jung, Jaewoong;Heo, Chan;Jeon, Seokwon
    • Tunnel and Underground Space
    • /
    • v.23 no.6
    • /
    • pp.470-479
    • /
    • 2013
  • Hydraulic fracturing is used as a method for promoting the fluid flow in the rock and, in the energy field such as geothermal development and the development of sales gas, many studies has been actively conducted. In many cases, hydraulic fracturing is not performed in isotropic rock and especially in the case of sedimentary rocks, hydraulic fracturing is conducted in the transverse isotropic rock. The direction of the crack growth on hydraulic fracturing does not necessarily coincides with the direction of maximum principal stress in the transverse isotropic rock. Therefore, in this study, bonded particle model with hydro-mechanical coupling analysis was adopted for analyzing the characteristics of hydraulic fracturing in transverse isotropic rock. In addition, experiments of hydraulic fracturing were conducted in laboratory-scale to verify the validity of numerical analysis. In this study, the crack growth and crack patterns showed significant differences depending on the viscosity of injection fluid, the angle of bedding plane and the influence of anisotropy. In the case of transverse isotropic model, the shear crack growth due to hydraulic fracturing appeared prominently.