DOI QR코드

DOI QR Code

Study on Hydraulic Fracturing in Transverse Isotropic Rock Using Bonded Particle Model

입자결합모델을 이용한 횡등방성 암석에서의 수압파쇄 특성 연구

  • 정재웅 (서울대학교 공과대학 에너지시스템공학부) ;
  • 허찬 (서울대학교 공과대학 에너지시스템공학부) ;
  • 전석원 (서울대학교 공과대학 에너지시스템공학부)
  • Received : 2013.11.18
  • Accepted : 2013.12.16
  • Published : 2013.12.31

Abstract

Hydraulic fracturing is used as a method for promoting the fluid flow in the rock and, in the energy field such as geothermal development and the development of sales gas, many studies has been actively conducted. In many cases, hydraulic fracturing is not performed in isotropic rock and especially in the case of sedimentary rocks, hydraulic fracturing is conducted in the transverse isotropic rock. The direction of the crack growth on hydraulic fracturing does not necessarily coincides with the direction of maximum principal stress in the transverse isotropic rock. Therefore, in this study, bonded particle model with hydro-mechanical coupling analysis was adopted for analyzing the characteristics of hydraulic fracturing in transverse isotropic rock. In addition, experiments of hydraulic fracturing were conducted in laboratory-scale to verify the validity of numerical analysis. In this study, the crack growth and crack patterns showed significant differences depending on the viscosity of injection fluid, the angle of bedding plane and the influence of anisotropy. In the case of transverse isotropic model, the shear crack growth due to hydraulic fracturing appeared prominently.

수압파쇄는 암반에서 유체의 흐름을 촉진시키기 위한 방법으로 사용되며 지열개발, 세일가스의 개발 등 최근 에너지 분야에서 그 어느 때 보다 활발한 연구가 이루어지고 있다. 수압파쇄의 대상이 되는 암반은 등방성을 갖지 않는 경우가 대부분이며 일부 퇴적암층에서는 횡등방성 암반에서 수압파쇄가 이루어진다. 횡등방성 암반에서는 수압파쇄에서 발생하는 균열의 성장 방향이 반드시 최대주응력 방향과 일치하지 않으며 이방성 구조에 따라 변화하게 된다. 그러므로 이 연구에서는 입자결합모델을 이용하여 횡등방성 암석에서의 수압파쇄 특성을 고찰하고 분석하고자 하였다. 또한 실험실 규모의 수압파쇄 실험을 실시하여 수치해석 결과의 타당성을 분석하고자 하였다. 본 연구에서는 가압되는 유체의 점도 및 층리면의 각도 그리고 이방성에 의한 영향으로 균열의 성장 및 균열 패턴에 큰 차이를 보였으며, 횡등방성 모델의 경우 전단균열에 의한 수압파쇄 균열의 성장이 우세한 것으로 나타났다.

Keywords

References

  1. Aadnoy, B., S., 1987, Stresses around boreholes drilled in sedimentary rocks, SPE 17119.
  2. Al-Busaidi, A., Hazzard, J.F., Young, R.P., 2005, Distinct element modeling of hydraulically fractured Lac du Bonnet granite, Journal Geophysical Research 110, B06302, DOI:10.1029/2004JB003297.
  3. Amadei, B., 1982, The influence of rock anisotropy on measurement of stresses in situ, Ph.D. Thesis, University of California Berkeley.
  4. Chitrala, Y., Moreno, C., Sondergeld, C., Rai, C., 2011, Microseismic and microscopic analysis of laboratory induced hydraulic fracrures, CSUG/SPE 147321.
  5. Choi, S.O., Lee, H.K., 1995, The analysis of fracture propagation in hydraulic fracturing using artificial slot model, Tunnel and Underground Space, 5. 251-265.
  6. Choi, S.O., 2000, A numerical study of hydraulic fractures propagation with rock bridges, Tunnel and Underground Space, 10. 447-456.
  7. Choi, S.O., 2011, Numerical approach for determination of shut-in pressure in hydrofracturing test, Tunnel and Underground Space, 21. 2, 128-137.
  8. Choi, Y., Bae, S., Park, P., Lee, C., Jeon, S., 2001, Analysis of hydro-fracturing test results using a mechanical crack model, Tunnel and Underground Space, 11. 3, 237-247.
  9. Falls, S.D., Young, R.P., Carlson, S.R., Chow, T., 1992, Ultrasonic tomography and acoustic emission in hydraulically fractured Lac du Bonnet granite, J. Geophys. Res., 97, 6867-6884. https://doi.org/10.1029/92JB00041
  10. Haimson, B.C., Fairhurst, C., 1967, Initiation and extension of hydraulic fracture in rocks, Soc. Pet. Eng. J., 9: 310-318.
  11. Hazzard, J.F., Young, R.P., Maxwell, S.C., 2000, Micromechanical modeling of cracking and failure in brittle rocks, J. Geophys. Res., 105(B7): 16683-97. https://doi.org/10.1029/2000JB900085
  12. Hazzard, J.F., Young, R.P., 2002, Moment tensors and micromechanical models, Tectonophysics, 356(1-3): 181-197. https://doi.org/10.1016/S0040-1951(02)00384-0
  13. Hubbert, M.K,, Willis, D.G., 1957, Mechanics of hydraulic fracturing, AIME, 210: 153-66.
  14. Ishida, T., 2001, Acoustic emission monitoring of hydraulic fracturing in laboratory and field, Construction and Building Materials, 15, 283-295. https://doi.org/10.1016/S0950-0618(00)00077-5
  15. Ishida, T., Chen, Q., Mizuta, Y., 2004, Influence of fluid viscosity on hydraulic fracture mechanism, Transaction of ASME, J. Energy Resource Technology, 126: 190-200. https://doi.org/10.1115/1.1791651
  16. Lockner, D., Byerlee, J.D., 1977 Hydrofracture in Weber sandstone at high confining pressure and differential stress, J. Geophys. Res., 82(14): 2018-2026. https://doi.org/10.1029/JB082i014p02018
  17. Ohtsu, M., Kawasaki, Y. 2010, AE-SiGMA analysis in brazilian test and accelerated corrosion test of concrete, Journal of AE, 28: 204-214.
  18. Park, B.N., 2013, Discrete element modeling of anisotropic mechanical behaviors for transversely isotropic rock, M.S. Thesis, Seoul National University.
  19. Potyondy, D.O., Cundall, P.A., 2004, bonded particle model for rock, Int. J. Rock Mech. Min. Sci., 41: 1329-64. https://doi.org/10.1016/j.ijrmms.2004.09.011
  20. Sasaki, S., 1998, Characteristics of microseismic events induced during hydraulic fracturing experiments at the Hijiori hot dry rock geothermal energy site, Tectonophysics, 289(1-3), 171-188 https://doi.org/10.1016/S0040-1951(97)00314-4
  21. Schmitt, D.R., Zoback, M.D., 1993, Infiltration effects in the tensile rupture of thin walled cylinders of glass and granite: implications for hydraulic fracturing, breakdown equation, Int. J. Rock Mech. Min. Sci., Geomech. Abstr., 14: 49-58.
  22. Shimizu, H., Murata, S., Ishida, T., 2011, The distinct element analysis for hydraulic fracturing in hard rock considering fluid viscosity and particle size distribution, Int. J. Rock Mech. Min. Sci., 48: 712-727. https://doi.org/10.1016/j.ijrmms.2011.04.013
  23. Zhao, X.P., Young, R.P., 2009, Numerical simulation of seismicity induced by hydraulic fracturing in naturally fractured reservoirs, SPE 124690.
  24. Zhou, J., Chen, M., Jin, Y., Zhang, G., 2008, Analysis of fracture propagation behavior and fracture geometry using a triaxial fracturing system in naturally fractured reservoirs, Int. J. Rock Mech. Min. Sci., 45(7): 1143-1152. https://doi.org/10.1016/j.ijrmms.2008.01.001
  25. Zoback, M., Rummel, F., Jung, R., Raleigh, C., 1977, Laboratory hydraulic fracturing experiments in intact and pre-fractured rock, Int. J. Rock. Mech. Min. Sci. & Geomech. Abstr., 14: 49-58.