A Numerical Study on Hydraulic Behavior in a Fractured Rock Medium with Hydromechanical Interaction

수리역학적 상호작용을 고려한 균열암반매질에서의 수리학적 거동에 대한 수치적 연구

  • Received : 2008.11.19
  • Accepted : 2009.01.22
  • Published : 2009.02.01

Abstract

This paper presents the numerical investigation for the hydraulic behavior of a fractured rock mass with a hydromechanical interaction which may be considered during the in-situ hydraulic injection test. These experiments consist in a series of flow meter injection tests for fractures existing along an open hole section installed in a borehole, and experimental results are applied for testing a numerical model developed to the analysis and prediction of such hydromechanical interactions. Field experimental results show that conductive fractures form a dynamic and interdependent network, that individual fractures cannot be adequately modeled as independent systems, that new fluid intaking zones generate when pore pressure exceeds the minimum principal stress magnitude in that borehole, and that pore pressures much larger than this minimum stress can be further supported by the circulated fractures. In this study, these characteristics are investigated numerically how to influence the morphology of the natural fracture network in a rock mass by using a discrete fracture ntework model.

본 논문은 수리학적 현장 주입시험 기간 동안 고려될 필요가 있는 수리역학적 상호작용에 따른 균열암반매질의 수리학적 거동에 대한 수치적 연구이다. 이러한 주입시험은 굴착정 내에 설치된 개구간(open hole section)을 따라 높은 압력을 가진 유량을 주입하며, 이를 통해 굴착정을 가로지르는 균열로부터 유량을 측정하는 것이다. 시간에 따라 변화되는 유량측정결과는 수리역학적 상호작용에 대한 분석 및 예측을 위해 개발된 수치모형의 현장 적용성을 평가하기 위해 사용되었다. 유량측정결과 전도성이 있는 균열들은 상호의존적인 균열망을 형성하며, 이로 인해 균열망을 구성하는 개별적인 균열요소들은 독립적인 시스템으로서 적절하게 모형화 될 수 없음을 보여주었다. 또한 간극수압이 굴착정 주위에 작용하는 최소주응력을 초과할 때 새로운 유체유입영역이 발생되며, 이러한 최소주응력보다 훨씬 큰 간극수압은 굴착정 주위의 균열들에 의해 유지될 수 있다는 것을 보여주었다. 본 연구에서 이러한 특성들이 자연 상태의 균열망의 구성형태에 따라 어떻게 영향을 미치게 되는지 이산 균열망 모형을 통해 수치적으로 분석되었다.

Keywords

Acknowledgement

Supported by : 서일대학

References

  1. 정우창 (2007), 공간적 상관길이와 역학적 효과에 따른 거친 단일 균열 내의 유체 흐름에 관한 수치적 연구, 한국지반환경공학회 논문집, 제8권, 제4호, pp. 1-13.
  2. Abdallah, G., Thoraval, A., Sfeir, A. and Piguet, J.P. (1995), Thermal convection of fluid in fractured media. International Journal of Rock Mechanics and Mining Science and Geomechanics Abstracts, Vol. 32, No. 5, pp. 481-490. https://doi.org/10.1016/0148-9062(95)00037-H
  3. Abelin, H., Birgersson, L., Agren, T. and Nerentnieks, I. (1988), A channeling experiment to study flow and transport in natural fractures. Lutze, W. and Ewing, R. C. (eds.) Material Research Society Symposium Proceeding, on Scientific Basis for Nuclear Waste Management X11, Berlin, Germany, Vol. 127, pp. 661-668.
  4. Bandis, S.C., Lumsden, A.C. and Barton, N.R. (1983), Fundamentals of rock joint deformation. International Journal of Rock Mechanics and Mining Science and Geomechanics Abstracts, Vol. 20, No. 6, pp. 249-268. https://doi.org/10.1016/0148-9062(83)90595-8
  5. Brown, S.R. and Scholz, C.H. (1985), Closure of random elastic surfaces in contact. Journal of Geophysical Research, Vol. 90, No. B7, pp. 5531-5545. https://doi.org/10.1029/JB090iB07p05531
  6. Bruel, D. (1999), Modelling hydraulic jacking tests on a preexisting fracture system. In Ninth International Congress on Rock Mechanics, Vouille & Berest, eds., Rotterdam, Balkema, pp. 857-862.
  7. Capasso, G., Scavia, C., Gentier, S. and Pellegrino, A. (1999), The influence of normal load on the hydraulic behaviour of rock fractures. In Ninth International Congress on Rock Mechanics, Vouille & Berest, eds., Rotterdam, Balkema, pp. 863-868.
  8. Ciarlet, P. (1983), Introduction a l'nalyse numerique matriciel et a l'ptimisation, Masson, pp. 1-852.
  9. Cornet, F.H. and Scotti, O. (1993), Analysis of induced seismicity for fault zone identification. International Journal of Rock Mechanics and Mining Science and Geomechanics Abstracts, Vol. 30, No. 7, pp. 789-795. https://doi.org/10.1016/0148-9062(93)90024-8
  10. Cornet, F.H. and Morin, R.H. (1997), Evaluation of hydromechanical coupling in a granite rock mass from a high-pressure injection experiment: le Mayet de Montagne, France, International Journal of Rock Mechanics and Mining Science and Geomechanics Abstracts, Vol. 34, No. 3-4, paper No. 207, pp. 1-14. https://doi.org/10.1016/S1365-1609(97)80028-7
  11. Cundall, P.A. and Hart, R.D. (1985), Development of generalized 2D and 3D Distinct Element Programs for modelling jointed rocks. Misc. Paper SL-85-1, U.S. Army Corps of Engineers, pp. 1-85.
  12. Gentier, S. (1986), Morphologie et comportement hydromecanique d'ne fracture naturelle dans un granite sous contrainte normale : etude experimentale et theorique, Ph.D dissertation, Univerisite d'rleans, Orleans, France, pp. 1-350.
  13. Jeong, W.C. (2000), Modelisation de l'influence d'ne zone de faille sur l'ydrogeologie d'n milieu fracture: Application au domaine du stockage des dechets nucleaires, Ph.D dissertation, Ecole Nationale Superieure des Mines de Paris, Paris, France, pp. 1-222.
  14. Pyrak-Nolte, L. (1992), Interrelationships between the hydraulic and seismic properties of fractures. Proc. of ISRM Intern. Conf. on fractured and jointed rock masses, 3-5 june, Lake Tahoe, California, USA, pp. 1232-1240.
  15. Raven, K.G. and Gale, J.E. (1985), Water flow in natural rock fracture as a function of stress and sample size. International Journal of Rock Mechanics and Mining Science and Geomechanics Abstracts, Vol. 22, No. 3, pp. 251-261. https://doi.org/10.1016/0148-9062(85)92952-3
  16. Rutqvist, J. (1995), Determination of hydraulic normal stiffness of fractures in hard rock from well testing. International Journal of Rock Mechanics and Mining Science and Geomechanics Abstracts, Vol. 32, No. 5, pp. 513-523. https://doi.org/10.1016/0148-9062(95)00039-J
  17. Snow, D.T. (1969), Anisotropic permeability of fractured media, Water Resources Research, Vol. 5, No. 6, pp. 1273-1289. https://doi.org/10.1029/WR005i006p01273
  18. Stephansson, O., Jing, L. and Tsang, C.F. (1996), Coupled Thermo-Hydro-Mechanical processes of fractured media. Developments in geothechnical engineering (79), Elsevier, The Netherlands, pp. 1-565.
  19. Unger, A.J.A. and Mase, C.W. (1993), Numerical study of the hydromechanical behaviour of two rough fracture surfaces in contact, Water Resources Research, Vol. 29, No. 7, pp. 2101-2114. https://doi.org/10.1029/93WR00516
  20. Witherspoon, P.A., Wang, J.S.Y., Iwai, K and Gale, J.E. (1980), Validity of cubic law for fluid flow in a deformable rock fracture, Water Resources Research, Vol. 16, No. 6, pp. 1016-1024. https://doi.org/10.1029/WR016i006p01016
  21. Yin, J.M. and Cornet, F.H. (1994), Integrated stress determination by joint inversion of hydraulic tests and focal mechanism. Geophysical Research Letters, Vol. 21, No. 24, pp. 2645-2648. https://doi.org/10.1029/94GL02584
  22. Zimmerman, R.W. and Bodvarsson, G.S. (1996), Hydraulic conductivity of rock fractures, Transport in porous media, No. 23, pp. 1-30.