• 제목/요약/키워드: flow field analysis

검색결과 2,180건 처리시간 0.035초

임펠러 타입 계량 밸브 입·출구 차압에 따른 유동해석에 관한 연구 (A Study on the Flow Analysis of Impeller type Measuring Valve according to Differential Pressure at Inlet and Outlet)

  • 김태준;이중섭;이치우
    • 한국산업융합학회 논문집
    • /
    • 제26권3호
    • /
    • pp.381-387
    • /
    • 2023
  • This study conducts the flow analysis on the basis of the impeller RPM of water measuring valve and differential pressure at valve inlet and outlet. The software used for the flow analysis is STAR-CCM+. In terms of the structure of the measuring valve, it has an impeller installed inside, and a metering chamber has inlet and outlet holes. The flow analysis on the water measuring valve drew the following conclusions: The flow rate and flow coefficient distribution according to the impeller RPM and differential pressure were on the linear increase. Regarding the flow field in the valve, the increased differential pressure had the highest velocity distribution, and complex flow field was generated in the measuring chamber. In particular, since the path between the inlet and outlet holes in the measuring chamber and the valve body was narrow, there was a section that had flow field interference. Given that, it showed the feature of the valve used for water measuring on the basis of the impeller RPM.

냉열발전을 위한 극저온 체크밸브의 유동해석 (Flow Analysis of Cryogenic Check Valve for LNG)

  • 문정현
    • 동력기계공학회지
    • /
    • 제20권1호
    • /
    • pp.5-10
    • /
    • 2016
  • Swing check valve is opened when the flow direction is forward, when the flow is reversed, the valve is automatically closed by back pressure. In this study, the internal flow field analysis of the valve was conducted by Fluent. The working fluid used in the study, using liquefied methane $-165^{\circ}C$ (CH4) and velocity field, pressure field, pressure drop coefficient were simulated by varying separately the opening divergence into four intervals from 0 to 100%. The approximate research result are as follow : When the opening divergence is smaller, it appears high pressure on the upstream side, this value is relaxed when the opening divergence is large. Flow rate coefficient of the valve shows a larger value as the degree of opening becomes larger, confirming that the check valve used in the study is in the effective flow rate counting range.

연료전지 분리판의 형상설계를 위한 유동해석 (Flow-Field Analysis for Designing Bipolar Plate Patterns in a Proton Exchange Membrane Fuel Cell)

  • 박정선;정혜미
    • 대한기계학회논문집B
    • /
    • 제26권9호
    • /
    • pp.1201-1208
    • /
    • 2002
  • A numerical flow-field analysis is performed to investigate flow configurations in the anode, cathode and cooling channels on the bipolar plates of a proton exchange membrane fuel cell (PEMFC). Continuous open-faced flow channels are formed on the bipolar plate surface to supply hydrogen, air and water. In this analysis, two types of channel pattern are considered: serpentine and spiral. The averaged pressure distribution and velocity profiles of the hydrogen, air and water channels are calculated by two-dimensional flow-field analysis. The equations for the conservation of mass and momentum in the two-dimensional fluid flow analysis are slightly modified to include the characteristics of the PEMFC. The analysis results indicate that the serpentine flow-fields are locally unstable (because two channels are cross at right angles). The spiral flow-fields has more stable than the serpentine, due to rotational fluid-flow inertia forces. From this study, the spiral channel pattern is suggested for a channel pattern of the bipolar plate of the PEMFC to obtain better performance.

TVD기법을 이용한 가스 분무 공정의 유동장 해석 (Numerical analysis of a flow field in gas atomization process using a TVD scheme)

  • 심은보
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1996년도 춘계 학술대회논문집
    • /
    • pp.131-136
    • /
    • 1996
  • The numerical method for the flow field of a gas atomization process is presented. For the analysis of the compressible supersonic jet flow of a gas. an axisymmetric Navier-Stokes equations are solved using a LU-factored upwind method. The MUSCL type TVD scheme is used for the discretization of inviscid flux, whereas Steger-Warming splitting and LU factorization is applied to the implicit operator. For the validation of the present method, we computed the flow field around the simple gas atomizer proposed by Issac. The numerical results has shown excellent agreement with the experimental data.

  • PDF

전향 원심 송풍기의 3차원 유동에 대한 수치해석 (Numerical Analysis of Three-Dimensional Flow in a Forward Curved Centrifugal Fan)

  • 윤준용;맹주성;변성준;이상환
    • 대한기계학회논문집B
    • /
    • 제24권7호
    • /
    • pp.916-923
    • /
    • 2000
  • Numerical study of three-dimensional turbulent flow in a forward curved centrifugal fan is presented. Standard $k-{\varepsilon}$ turbulence model and non-orthogonal curvilinear coordinates arc used to consider the turbulent flow field and complex geometry. Finite Volume approach is adopted for discretization scheme and structured grid system is used to help convergence. Multiblock grid system is used for flow field and divided into five domains that are inlet, outlet, impeller, tip clearance and scroll. It is assumed that the flow field is steady and incompressible. These numerical results are compared with the experimental data inside a rotor and at the fan outlet. Most important flow features are captured through this numerical approach. Finally details of flow field inside a fan are described and analyzed.

LES에 의한 RAC 실내기의 유동장 개선에 관한 전산유동해석 (Computational Flow Analysis on the Flow Field Improvement of an Indoor RAC by LES)

  • 김장권;오석형
    • 동력기계공학회지
    • /
    • 제16권3호
    • /
    • pp.29-36
    • /
    • 2012
  • The computational flow analysis using LES technique was introduced to investigate the flow field improvement of an indoor RAC chassis consisting of a rear-guider, a stabilizer and a cross-flow fan. This unsteady three-dimensional numerical analysis was carried out by the commercial SC/Tetra software. The edge blocks were adopted in this study as a tool for the flow field improvement of an indoor RAC. In view of the results so far achieved, the edge blocks cause the center of an eccentric vortex to be stable along all length of a cross-flow fan, and then, the static pressure and the velocity vector show a stable distributions. In consequence, because the edge blocks eliminate a reverse flow near the edges, an exhausting flow becomes to be stable and uniform.

Numerical Analysis of the Three-Dimensional Wake Flow and Acoustic Field around a Circular Cylinder

  • Kim, Tae-Su;Kim, Jae-Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제11권4호
    • /
    • pp.319-325
    • /
    • 2010
  • For decades, researchers have rigorously studied the characteristics of flow traveling around blunt objects in order to gain greater understanding of the flow around aircraft, vehicles or vessels. Many different types of flow exist, such as boundary layer flow, flow separation, laminar and turbulent flow, vortex and vortex shedding; such types are especially observed around circular cylinders. Vortex shedding around a circular cylinder exhibits a two-dimensional flow structure possessing a Reynolds number within the range of 47 and 180. As the Reynolds number increases, the Karman vortex changes into a three-dimensional flow structure. In this paper, a numerical analysis was performed examining the flow and aero-acoustic field characteristics around a circular cylinder using an optimized high-order compact scheme, which is a high order scheme. The analysis was conducted with a Reynolds number ranging between 300 and 1,000, which belongs to B-mode flow around a circular cylinder. For a B-mode Reynolds number, a proper spanwise length is analyzed in order to obtain the characteristics of three-dimensional flow. The numerical results of the Strouhal number as well as the lift and drag coefficients according to Reynolds numbers are coincident with the other experimental results. Basic research has been conducted studying the effects an unstable three-dimensional wake flow on an aero-acoustic field.

偏心된 二重圓管의 環狀部를 지니는 層流流動에서의 連度場 및 溫度場의 確立에 대한 硏究 (A study on the development of the velocity and temperature fields in a laminar flow through an eccentric annular ducts)

  • 이택식;이상산
    • 대한기계학회논문집
    • /
    • 제10권6호
    • /
    • pp.861-869
    • /
    • 1986
  • 본 연구에서는 동시확립문제의 속도장해석에 있어서 단면내의 속도분포에 대 한 일체의 가정을 하지 않고 운동량방정식을 직접 해석하여 단면내의 속도분포를 구하 였다. 또한 Prandtl수, 반경비 및 편심도가 열전달특성에 미치는 영향에 대한 해석 도 수행하였다.

내부 핀이 부착된 열교환기의 유동장해석 (Analysis of flow and heat transfer in internally finned tube)

  • 정호열;정재택;고형종
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1999년도 추계 학술대회논문집
    • /
    • pp.139-144
    • /
    • 1999
  • There have been many studies for heat transfer enhancement. Particularly, the study of flow in heat exchangers which have fin device has been main theme in heat transfer area. Practically, the circular tube which has internal fins is widely used for developing heat transfer rate. In this study, flow and heat transfer analysis of the circular tube with fins are investigated. The height and the number of fins are arbitrary. The flow field is assumed to be laminar. The conformal mapping is used for analytic solution of the laminar flow field. Discretization of governing equation, namely, FDM was used for numerical analysis. The velocity field, flow rate and shear stress are calculated for some numbers of fins in circular tube and for some heights of fin. Temperature fields are plotted along the tube length. It can be shown that the numerical solution agrees with the analytical solution.

  • PDF

Arcjet Thruster 유동의 전산해석 (NUMERICAL FLOW FIELD ANALYSIS OF AN ARCJET THRUSTER)

  • 신재렬;최정열
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2006년도 추계 학술대회논문집
    • /
    • pp.101-105
    • /
    • 2006
  • The computational fluid dynamic analysis has been conducted for the thermo-chemical flow field in an arcjet thruster with mono-propellant Hydrazine (N2H4) as a working fluid. The Reynolds Averaged Navier-Stokes (RANS) equations are modified to analyze compressible flows with the thermal radiation and electric field. The Maxwell equation, which is loosely coupled with the fluid dynamic equations through the Ohm heating and Lorentz forces, is adopted to analyze the electric field induced by the electric arc. The chemical reactions of Hydrazine were assumed to be infinitely fast due to the high temperature field inside the arcjet thruster. The chemical and the thermal radiation models for the nitrogen-hydrogen mixture and optically thick media respectively, were incorporated with the fluid dynamic equations. The results show that performance indices of the arcjet thruster with 1kW arc heating are improved by amount of 180% in thrust and 200% in specific impulse more than frozen flow. In addition to thermo-physical process inside the arcjet thruster is understood from the flow field results.

  • PDF