• Title/Summary/Keyword: flow domain

Search Result 973, Processing Time 0.029 seconds

Noise Analysis for Large Silencers of Ships and Off-shore Plants using Energy Flow Analysis

  • Kim, Tae-Gyoung;Song, Jee-Hun;Hong, Suk-Yoon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.3
    • /
    • pp.297-307
    • /
    • 2020
  • In the study, energy flow analysis is performed to predict the performance of silencers. To date, deterministic approaches such as finite element method have been widely used for silencer analysis. However, they have limitations in analyzing large structures and mid-high frequency ranges due to unreasonable computational costs and errors. However, silencers used for ships and off-shore plants are much larger than those used in other engineering fields. Hence, energy governing equation, which is significantly efficient for systems with high modal density, is solved for silencers in ships and off-shore plants. The silencer is divided into two different acoustic media, air and absorption materials. The discontinuity of energy density at interfaces is solved via hypersingular integrals for the 3-D modified Helmholtz equation to analyze multi-domain problems with the energy flow boundary element method. The method is verified by comparing the measurements and analysis results for ship silencers over mid-high frequency ranges. The comparisons confirm good agreement between the measurement and analysis results. We confirm that the applied analysis method is useful for large silencers in mid-high frequency ranges. With the proven procedures, energy flow analysis can be performed for various types of silencer used in ships and off-shore plants in the first stage of the design.

Stochastic Simulation of Groundwater Flow in Heterogeneous Formations: a Virtual Setting via Realizations of Random Field (불균질지층내 지하수 유동의 확률론적 분석 : 무작위성 분포 재생을 통한 가상적 수리시험)

  • Lee, Kang-Kun
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.1 no.2
    • /
    • pp.90-99
    • /
    • 1994
  • Heterogeneous hydraulic conductivity in a flow domain is generated under the assumption that it is a random variable with a lognormal, spatially-correlated distribution. The hydraulic head and the conductivity in a groundwater flow system are represented as a stochastic process. The method of Monte Carlo Simulation (MCS) and the finite element method (FEM) are used to determine the statistics of the head and the logconductivity. The second moments of the head and the logconductivity indicate that the cross-covariance of the logconductivity with the head has characteristic distribution patterns depending on the properties of sources, boundary conditions, head gradients, and correlation scales. The negative cross-correlation outlines a weak-response zone where the flow system is weakly responding to a stress change in the flow domain. The stochastic approach has a potential to quantitatively delineate the zone of influence through computations of the cross-covariance distribution.

  • PDF

A Study of the Characteristics of Input Boundary Conditions for the Prediction of Urban Air Flow based on Fluid Dynamics (유체 역학 기반 도시 기류장 예측을 위한 입력 경계 바람장 특성 연구)

  • Lee, Tae-Jin;Lee, Soon-Hwan;Lee, Hwawoon
    • Journal of Environmental Science International
    • /
    • v.25 no.7
    • /
    • pp.1017-1028
    • /
    • 2016
  • Wind information is one of the major inputs for the prediction of urban air flow using computational fluid dynamic (CFD) models. Therefore, the numerical characteristics of the wind data formed at their mother domains should be clarified to predict the urban air flow more precisely. In this study, the formation characteristics of the wind data in the Seoul region were used as the inlet wind information for a CFD based simulation and were analyzed using numerical weather prediction models for weather research and forecasting (WRF). Because air flow over the central part of the Korean peninsula is often controlled not only by synoptic scale westerly winds but also by the westerly sea breeze induced from the Yellow Sea, the westerly wind often dominates the entire Seoul region. Although simulations of wind speed and air temperature gave results that were slightly high and low, respectively, their temporal variation patterns agreed well with the observations. In the analysis of the vertical cross section, the variation of wind speed along the western boundary of Seoul is simpler in a large domain with the highest horizontal resolution as compared to a small domain with the same resolution. A strong convergence of the sea breeze due to precise topography leads to the simplification of the wind pattern. The same tendency was shown in the average vertical profiles of the wind speed. The difference in the simulated wind pattern of two different domains is greater during the night than in the daytime because of atmospheric stability and topographically induced mesoscale forcing.

Logical Interface based HNP Change Scheme for Flow Mobility in PMIPv6 Domains (PMIPv6 도메인에서 플로우 이동성 지원을 위한 논리인터페이스 기반 HNP 변환 기법)

  • Hong, Yong-Geun;Han, Ky-Jun;Youn, Joo-Sang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.4
    • /
    • pp.677-685
    • /
    • 2012
  • Recently, wireless multi-networking technology has been studied for supporting multi-interface in mobile node. As the related work, in the IETF NetExt WG, the extension of Proxy Mobile IPv6 protocol for supporting flow mobility is actively on going in discussion. PMIPv6 protocol supports simultaneous access through the multi-interface in a mobile node and inter-technology handover between multiple interfaces. However, this protocol can not support flow mobility. Thus, in this paper, when a mobile node connects to PMIPv6 domain through multi-interface, as a way to support flow mobility, the design of logical interface and Home Network Prefix change scheme based on logical interface are proposed, We show that the proposed scheme can perform flow mobility service without end-to-end disconnection in PMIPv6 domain.

CFD simulations of the flow field of a laboratory-simulated tornado for parameter sensitivity studies and comparison with field measurements

  • Kuai, Le;Haan, Fred L. Jr.;Gallus, William A. Jr.;Sarkar, Partha P.
    • Wind and Structures
    • /
    • v.11 no.2
    • /
    • pp.75-96
    • /
    • 2008
  • A better understanding of tornado-induced wind loads is needed to improve the design of typical structures to resist these winds. An accurate understanding of the loads requires knowledge of near-ground tornado winds, but observations in this region are lacking. The first goal of this study was to verify how well a CFD model, when driven by far field radar observations and laboratory measurements, could capture the flow characteristics of both full scale and laboratory-simulated tornadoes. A second goal was to use the model to examine the sensitivity of the simulations to various parameters that might affect the laboratory simulator tornado. An understanding of near-ground winds in tornadoes will require coordinated efforts in both computational and physical simulation. The sensitivity of computational simulations of a tornado to geometric parameters and surface roughness within a domain based on the Iowa State University laboratory tornado simulator was investigated. In this study, CFD simulations of the flow field in a model domain that represents a laboratory tornado simulator were conducted using Doppler radar and laboratory velocity measurements as boundary conditions. The tornado was found to be sensitive to a variety of geometric parameters used in the numerical model. Increased surface roughness was found to reduce the tangential speed in the vortex near the ground and enlarge the core radius of the vortex. The core radius was a function of the swirl ratio while the peak tangential flow was a function of the magnitude of the total inflow velocity. The CFD simulations showed that it is possible to numerically simulate the surface winds of a tornado and control certain parameters of the laboratory simulator to influence the tornado characteristics of interest to engineers and match those of the field.

Numerical Analyses on the Aerodynamic Characteristics of an Axial Type In-line Duct Fan (축류식 In-line duct fan의 공력특성에 관한 전산해석)

  • Cho, Lee-Sang;Ahn, Kwang-Weon;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.1-11
    • /
    • 2004
  • Numerical analyses on the aerodynamic characteristics of a counter rotating axial flow fan were conducted for the development of an axial type in-line duct fan. The counter rotating fan has a front rotor and a rear rotor which are counter rotating each other. Blade design of the counter rotating fan was done by extension of design method for axial flow fan which consists of rotor and stator blades. Through flow analysis was performed using matrix method which is applied for flow fields prediction of compressors or turbines. Aerodynamic characteristics and characteristic curves of the counter rotating fan were analyzed by expansion of the frequency domain panel method with duct modeling. Pressure losses were higher at leading edge and hub region of rotor blades. Characteristic curve of the counter rotating fan was overpredicted without consideration of viscous effect.

Numerical Simulation of Heat and Flow Behaviors in Butt-fusion Welding Process of HDPE Pipes with Curved Fusion Surface (굴곡 융착면을 이용한 고밀도폴리에틸렌 관의 버트 융착 공정에서의 열유체 거동 수치모사)

  • Yoo, Jae Hyun;Choi, Sunwoong;Ahn, Kyung Hyun;Oh, Ju Seok
    • Korean Chemical Engineering Research
    • /
    • v.55 no.4
    • /
    • pp.561-566
    • /
    • 2017
  • Butt-fusion welding process is used to join the polymeric pipes. Recently, some researchers suggest the curved surface to enhance a welding quality. We investigated how curved welding surface affects heat and flow behaviors of polymer melt during the process in 2D axisymmetric domain with finite element method, and discussed the effect to the welding quality. In this study, we considered HDPE pipes. In heat soak stage, curved phase interface between the melt and solid is shown along the shape of welding surface. In jointing stage, squeezing flow is generated between curved welding surface and phase interface. The low shear rate in fusion domain reduces the alignment of polymer to the perpendicular direction of pipes, and then this phenomenon is expected to help to enhance the welding quality.

Investigation of the Performance of Spectral Domain Optical Doppler Tomography with High-speed Line Scanning CMOS Camera and Its Application to the Blood Flow Measurement in a Micro-tube

  • Park, Cheol Woo;Lee, Changho;Lim, SooHee;Ni, Aleksey;An, Jin Hyo;Lee, Ho;Bae, Jae Sung;Kim, Jeehyun
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.174-180
    • /
    • 2012
  • In this study, the feasibility of spectral domain optical Doppler tomography for measuring blood flow characteristics in a micro-tube was demonstrated through several experiments. The use of an SD-ODT system in blood flow measurement can provide high resolution images (5 microns resolution). We prepared three capillary tubes to reveal the effect of different concentrations of hematocrit ratio (HR). One tube serves as the control. The two other tubes contained different concentrations of HR (5%, 25%). Three different capillary tube inlet flow velocities were tested in the present study. The Reynolds number (Re) which is based on the capillary tube inner diameter ranges from Re=6 to 48. We calculated a Doppler shift of the power spectrum of the temporal interference fringes with Kasai autocorrelation function to achieve the velocity profile of the flow. As a result, SD-ODT systems could not detect the cell depletion layer in the present study due to the limitation of spatial resolution. Nevertheless, these systems were proven to be capable of observing the RBCs of blood.

SUPERSONIC/HYPERSONIC UNSTEADY AERODYNAMIC ANALYSIS OF A WEDGE-TYPE AIRFOIL USING NONLINEAR PISTON THEORY AND EULER EQUATIONS (비선형 피스톤 이론과 오일러 방정식을 이용한 쐐기형 에어포일의 초음속/극초음속 비정상 공력해석)

  • Kim Dong-Hyun
    • Journal of computational fluids engineering
    • /
    • v.10 no.3 s.30
    • /
    • pp.1-8
    • /
    • 2005
  • In this study, unsteady aerodynamic analyses of a wedge-type airfoil based on nonlinear piston theory and Euler equations have been performed in supersonic and hypersonic flows. The third-order nonlinear piston theory (NPT) to calculate unsteady lift and moment coefficients is derived and applied in the time-domain. Also, unsteady flow quantities are obtained from the two-dimensional time-dependent Euler equations. For the CFD based unsteady aerodynamic analyses, an arbitrary Lagrangean-Eulerian (ALE) formulation for the Euler equations is used to calculate flow fluxes in the computational flow field with moving boundaries. Numerical comparisons for unsteady lift and moment coefficients are presented between NPT and Euler approaches. The results show very good agreements in the high supersonic and hypersonic flows. It means that the present NPT can be efficiently used to predict unsteady aerodynamic forces ol wedge type airfoils with dynamic motions in the high supersonic and hypersonic flow regimes.

Element-free simulation of dilute polymeric flows using Brownian Configuration Fields

  • Tran-Canh, D.;Tran-Cong, T.
    • Korea-Australia Rheology Journal
    • /
    • v.16 no.1
    • /
    • pp.1-15
    • /
    • 2004
  • The computation of viscoelastic flow using neural networks and stochastic simulation (CVFNNSS) is developed from the point of view of Eulerian CONNFFESSIT (calculation of non-Newtonian flows: finite elements and stochastic simulation techniques). The present method is based on the combination of radial basis function networks (RBFNs) and Brownian configuration fields (BCFs) where the stress is computed from an ensemble of continuous configuration fields instead of convecting discrete particles, and the velocity field is determined by solving the conservation equations for mass and momentum with a finite point method based on RBFNs. The method does not require any kind of element-type discretisation of the analysis domain. The method is verified and its capability is demonstrated with the start-up planar Couette flow, the Poiseuille flow and the lid driven cavity flow of Hookean and FENE model materials.