Journal of the Korean Society of Groundwater Environment, Vol. 1, No. 2, pp. 90~99, December, 1994

Stochastic Simulation of Groundwater Flow in Heterogeneous
Formations: a Virtual Setting via Realizations
of Random Field
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Abstract : Heterogeneous hydraulic conductivity in a flow domain is generated under the assumption that it

is a random variable with a lognormal, spatally-correlated distribution. The hydraulic head and the

conductwity in a groundwater flow system are represented as a stochastic process. The method of Monte Carlo
Simulation (MCS) and the finite element method (FEM) are used to determine the statistics of the head and
the logconductivity. The second moments of the head and the logconductivity indicate that the cross-
covariance of the logconductivity with the head has characteristic distribution patterns depending on the

properties of sources, boundary conditions,

head gradients, and correlation scales.

The negative cross-

correlation outlines a weak-response zone where the flow system is weakly responding to a stress change in the

flow domain. The stochastic approach has a potential to quantitatively delineate the zone of influence through

computations of the cross-covariance distribution.

2 %:FHAER dgke] Bt £EF A3

.
274

F52d gellA EFAY FRIAEEE WAAZ =

o2 AXEE Hite & YA Aselel Sl
AT} Aorglell vak #E $A8 B4

Sglel FelaEs

HAQ) BEES Btk Fel $99} FRAEE) B

WA gFe Ao & 4 glold ake £

INTRODUCTION

Over the last two decades, researchers who have been try-
ing to understand groundwater flow and transport processes
in natural geological media have begun to recognize that we
do not know nearly as much as we once thought we did. Na-
tural geological formations are generally not homogencous
nor uniformly random in terms of hydrogeologic properties
such as hydraulic conductivity, specific storage, infiltration and
recharge rate, etc. Heterogeneitv of natural porous formations
may contain multiple, nested, natural length and time scale or
éontinuousl.v evolving scales (Cushman, 1984; 1986: 1990).

Simulations of hydraulic -~ head patterns at field sites are

subject to large uncertainties because of the uncertainty of

input parameters. Boundaries set for flow domains may

have uncertainties due to uncertain boundaries between geo-
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logical units. Source — point or source-area may also have
uncertaindes in location and source strength. But, in most
cases of groundwater flow simulation problems in the field
area, hydraulic conductivity and porosity are two represen-
tative hydrogeologic parameters which have the most un-
certainty in measurement and spatial distribution. In fact,
conductivities within a hydrogeological unit can vary over
several orders of magnitude. Most workers have found that
the large variability of conductivities can be well described
by a lognormal distribution (Freeze, 1975; Schwartz, 1977)
and also found that log hydraulic conductivity measurements
are usually autocorrelated (Garabedian et al, 1991; Woodbury
and Sudicky, 1992).

The present study uses the method of Monte Carlo Simu-
lation (MCS) to simulate the hydraulic conductivity field, and
the finite element method (FEM) to determine the hvdraulic
head field which is a known tunction of the hydraulic con-

ductivity. The purpose of random conductivity simulations is
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to generate input conductivity fields for the Monte Carlo
simulation of groundwater flow processes under specified phy-
sical environments. From multiple realizations of the hydraulic
head field as an output, it is possible to calculate the statistics
of the output and relate them to the statistics of the con-
ductivity fields. It is also possible to elucidate statistical re-
lationships between the output and the hydraulic parameters
such as pumping rates, locations of pumping wells, recharge
rates, boundary conditions, locations of boundaries, ir-
regularity of boundaries, storativity, etc.

The Monte Carlo Simulation method is conceptually quite
simple but it provides a tool to treat the hydraulic con-
ductivity as a spatial stochastic process as illustrated by Lee et
al. (1993) and Lee and Cushman (1993). The MCS method
can be used to estimate the covariance of hydraulic head a-
long with the head - logconductivity cross covariance which

cannot be obtained by deterministic modeling.
RANDOM FIELD GENERATION

Statistical properties of conductivity data

Natural heterogeneity of geologic formations is manifest in
the spatial variability of hydraulic properties which induce the
randomness of the groundwater flow and transport. A ran-
dom variable is a variable whose values are specified by laws
of probabilities. A random function is a set of random vari-
ables corresponding to points in a unidimensional or mul-
tidimensional space. The term 'random field' is generally used
in case of multidimensional space.

Hydraulic conductivity is one of typical random fields rend-
ered from the heterogeneity of the natural porous formations.
In order to get the best linear unbiased estimation of a ran-
dom variable, we need to characterize the random field. A
practical and quite useful characterization of a random field is
the description of the random field through its mean and co-
variance function, i.e., its first two moments which are suf
ficient tor the linear minimum-variance unbiased estimation.
A number of researchers have characterized the spatial vari-
ability of hydraulic conductivity (K) by the covariance func-
tion of logconductivity and used stochastic methods to a-
nalyze the role of covariance plays in flow and transport
(Dagan, 1989; Gelhar, 1993; Rubin and Dagan, 1987; Sun
and Yeh, 1992). )

The log conductivity, Y, is defined as Y=In K , where K is
the hydraulic conductivity. Y is assumed as a random variable
with autocorrelated normal distribution, that is v=Njy, o]
where gt is the mean and o is the square root of the variance.
The observed values of Y are commonly autocorrelated in a
sense that values separated by short distance are highly cor-

related, and those separated by long distance are weakly cor-
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related or not correlated. The autocorrelation function can be
expressed in terms of distance. One of the most commonly
used functions is the exponential model given by Jones
(1990).

Y(d) = exp(~d / Ay)

where Ay is the correlation scale and d is the distance vector.

(1)

Correlation scale associated with the covariance of a sta-
tionary function is the distance between two spatial points
over which random variables are considered to be un-
correlated. The present study simplifies problem that the sto-
chastic process of logconductivity is second order stationary.
Second order stationarity or wide sense stationarity is de-
fined as: 1. The mean of a random variable is independent

-

of position:-
(2)

2. The covariance function between two spatial points de-
pends only on the vector difference of the two points:

Cx,, xy) = C(x, (3)

x3)

The second order stationary process is anisotropic if the co-
variance function depends on the direction of C(¥,, x3), oth-
erwise it is isotropic and the covariance function is determined
by length of the vector difference ¥, - %,

The covariance function can be represented as C(idl, a, B),
where |dl is the modulus of the vector d, and o and B are its
longitude and latitude. The covariance function is isotropic
when C(ldl, &, B) depends only on the modulus Idi of the vec-
tor d. On the contrary, the covariance is anisotropic when C
(Idl, @, B) is not the same in every direction. That is, the struc-
tural function (ldl, &, B) depends on the directional paramet-
ers a and B.

Representation of anisotropic covariance
A general structural function of anisotropic covariance can
be made up of the nested sum of N isotropic structures:
N
C(d) = YCi(l4; ) (4)
i=1
Each of the directional variabilities in Equation (4), C, ( |d; ),
depends on only |d;| not on the longitude or the latitude.
Each preferential direction, d;, which composes one of iso-
tropic structures in Equation (4) is usually known geologically.
The following three preferential directions are most common
as results of geological processes:
(1) Vertical direction (|dw |): depositional process or surface
weathering.
(2) Horizontal direction (|ds| or |d.|): deposition currents

in an alluvial deposit.
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(3) Radial direction (Vd?+d?): stratification. where du and
d, are Cartesian coordinates in the horizontal plane and 4w
is a coordinate vertical to the horizontal plane. Though
many preferential directions can be presented by a certain
geological process or structure, the three directions will be
considered in the following approach. With the preferential
directions in consideration, an anisotropic covariance can be

represented as:

C(du,dv,dW):K0C0(|d )+ K Cr(ldu |HKCrip(law |) +

KoC, (Vdi +d?) + K;C(1d |) (5)

where K, K,;, K3, K, and K, are positive constants and C,
C,;, Cpp C, and Cy are isotropic covariances with unit sills

and ay, @y, @13, 4, and a; ranges.

Realization of random field

Each isotropic term in Equation (5) is taken independently
to realize the corresponding random field and then all the real-
izations of the isotropic fields are added up for the anisotropic
field. At a given point P(d) the random field z(d) is obtained
by the sum of five independent random fields:

z(h)=2z¢(d) +2z1(d) +21(d) +2(d) +25(d) (6)

where zy(d) = random field with covariance K((d)C(|d |)
z,,(@) = random field with covariance K ;,(d)C (| du 1)
z,5(d) = random field with covariance K 5(d)C (| dw |)

2, (d) = random field with covariance K(d)C,(Vd? + d?)
2, (d) = random field with covariance K(d)C({d |)

|

Figure 1. A square aquifer with finite elements.
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VIRTUAL EXPERIMENTS

A rectangle (120 mx120 m) is employed for the areal
domain of a confined aquifer with uniform thickness and
boundary conditions subject to change. The rectangular
domain is divided into 288 elements as shown in Figure 1.
The mean of Y is fixed at 3.5 m/day, while the variance and
the correlation scale are subject to change.

Simulation of conductivity field

Many methods are available for simulation of one-di-
mensional realizations of a stationary stochastic process with
a given covariance (Markovian generating process in Matalas
(1967); Thomas and Fiering (1962); Papoulis (1965)).
However, these methods are generally inapplicable to co-
variance functions or to functions defined over two or three
dimensions.

The 'turning bands' method provides multidimensional
simulations with reasonable computer costs by reducing all n-
dimensional simulations to several independent one-di-
mensional simulations along lines which are then rotated in
the n-dimensional space. The turning bands method was in-
troduced by Matheron (1973) and it has been applied to min-
ing geostatistics (David, 1977; Journel and Huijbregts, 1978).
In the present study, the 'turning bands method' is applied to
2-dimensional simulations of the hydraulic transmissivity with
given mean, variance and covariance functions. The simu-
lation procedure for two dimensional logtransmissivity is the
following:

1) Generate a sequence of normally distributed random vari-
ables uy, u,, Us,..., Un, with a mean of zero and a variance of
1.

2) Draw m lines, D4, D,,..., Dm, uniformly distributed over a
unit sphere with the origin at O.

3) Consider a random variable Y with a zero mean and the
same variance of logconductivity, 6¢. Simulate Yo (Y value at

the origin O) by

Yo =my(=0.0)+ cyu, (7)

where mY is the mean of Y.

4) Make nodes X, (D;,), X1,(D;),...X;(D;) from the origin a-
long the line Di with the same interval Al and make bands
with the interval Al by drawing lines passing through the mid
points between nodes and perpendicular to line D;

5) Simulate Y;(X) at each node along D; by

YX.(D;) = C§) X o(Dy) —my) + 0y [1 = (CE)]V 2, (8)

where C ((,‘,; is the one-dimensional covariance function a-

long the line D; converted from a two-or three-dimensional
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Figure 3. Spatial covariance of a realized logconductivity.

covariance. The covariance function C ((,1,; is not the covariance

function of the two-or three-dimensional domain where the
variance function is known or estimated from the sampled
data. Journel and Huijbregts (1978) gave an equation to
simulate the one-dimensional covariance C(S) from the fix-

ed three-dimensional covariance C(r) as :

coxs)=Lscs) 9
ds

If Equation (4) is used to simulate the one-dimensional co-

variance function from the three-dimensional covariance func-

tion given in Equation (1), then

COS)=(1~[h|/Ay)exp (= |h ]/ ) (10)

The covariance function in Equat:ioh (10) is actually used in
the simulation of Y(X;(D,)).
6) The final value of the logconductivity, y, at the point P is
then obtained by taking the sum of the N contributions, i.e.,
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N bands which encompass the point P:

1 &

yOp)=my + DX G (D) (11)
where my is the mean of the logtransmissivity and Xpi is the

band of the distribution line D; which encompass the point P.

The first logconductivity realization of 100 realizations is
shown in Figure 2. The sample variance of the 100 logcon-
ductivity fields exactly reproduces the specified variance within
maximum deviation error of 10%. The spatial covariance of
the first realization among the total 100 realizations is shown
in Figure 3. The spatial covariance is computed at a series of
nodes representing consccutive intervals. The spatial co-
variance generally matches the covariance function given for
the stochastdc process though the spatial covariance of a real-
ized logconductivity distribution does not necessarily be the
covariance of the random logconductivity field. In many cases,
related with the ergodicity assumption, there can be a prag-
matic aspect of spatial estimation associated with the need to
study the statistical nature of single replicates as analogs to na-
tural systems in which only one realization is available
(Tompson ez al., 1989).

If a random field is wide sensc stationary and generated over a
domain which is substantially large in comparison with the corre-
lation scale, then statistical estimates can be made over space for
single realizations of the field. That is, the ergodic approach can
be applied because the spatial statistics approach ensemble statis-
tics as the size of the region extends to infinity.

Computation of hydraulic head field

The finite element approach using a Galerkin formulation is
used to compute a head distribution from each realized con-
ductivity field. The hydraulic head and the conductivity can
be linked by solving the groundwater flow equation subject
to boundary and initial conditions. A form of the partial dif-
ferental equation which is assumed to govern groundwater

flow in an aquifer is :

Ve eVh)+r =52

” (12)

where h=h(x,y) is the hydraulic head (dimension L), Kis the
conductivity tensor (dimension LT-1), r=r(x,y) is the source/
sink term (dimension T7'), Ss is the specific storage
(dimension L), and t is the time.

Boundaries of a flow domain may be specified as one of
three types of boundary conditions as follows [Javandel et al.,
1984; Daus and Frind, 1985]:

(1). Dirichlet (first) type boundary condition specifies head:

hx,y.t)=ho(xy,t) (13)
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(2). Neumann (second) type boundary condition specifics nor-

mal groundwater flux:

(K ®Vh) @7 =g (x.y,1) (14)

Standard Galerkin formulation in Cartesian coordinates is used
to compute the hydraulic head distribution with each realization
of the conductivity field. Firstly, the entire domain is discretized
by a system of connected elements and an approximate solution
A(x,y) is defined in terms of basis function as follows:

A NNODE
h= Y N (x.y) (15)
L=1 .

where NNODE is the rotal number of nodes, N; (x,y) are the
basis functions, and /4, are unknown heads at the nodes.
Secondly, the approximate solution is substituted into the
governing equation and the residuals of the modified govern-
ing equation weighted by NNODE basis functions is set zero
when integrated over the entire domain:

A
oh

t

3 (16)

A
HQ[VQ(K ®Vh) +r —Ss )Ndedy =0
Lastly, the integral equation in Eq. (16) is converted to a sys-
tem of linear equations of the form:
A
[G] 1k ¢ -{f)-{CHh}={0} (17)
where [G] is the global conductance matrix, {f} is a vector

containing the specified fluxes, {p} is the global capacitance
matrix, and {}/1\} is the vector of unknown heads. Equation

(17) is solved using the iteration method.

Ensemble statistics of realizations

For each realization of y, hydraulic head at each node can
be obtained by solving the boundary value problem. The col-
lection of possible realizations of hydraulic head fields might
depend on the simulation of logtransmissivity. As N, total
number of logtransmissivity realizations, increases sufficiently,

the following statistics will become stable :

— 1 N

h@)= 5 210 (18)

YG) 11}”} 9

Y(i)==YY,( 1

N& i® (19)
1Y -

Ry (i) = FZ(h(i) —-h( ))2 (20)
j=1
N — —

Ry (i) = %Z(h (@) - RENY;() -YE)) (21)
j=1

where Y(i) and (i) are the mean logconductivity and the
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Figure 5. Head covariance versus the variance of logconductivity.

mean head at node i, respectively, and )_/j(i ) and Zj(i ) are j-th
realization of the logconductivity and head at node i. The un-
certainty in the hydraulic head field is derived in the form of

the mean and the covariance functions.
RESULTS

Effects of changes in the variance of logconductivity
Gelhar (1986) worked on an infinite aquifer and has given
a result, for steady local isotropic flow,

ot < J20H (22)

where ] is the mean head gradient.
Equation (22) suggests that the increment of 0}, and that of

o, have a linear relationship. Jones (1989) has shown a result
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Table 1. Boundary condition settings to compute the head variance and the cross-covariance of the head with the logconductivity.

Setting No. Top Boundary Bottom Boundary Left Boundary Right Boundary
#1 B B A0 B
#2 B (on A0 A0
#3 B B A0 A0
#4 B B B A0
#5 B B Al A0
AOQ = Constant-Head Boundary (Hydraulic Head = 100 m)
Al = Constant-Head Boundary (Hydraulic Head = 112 m)

= No-Flow Boundary
= Specified-Flux Boundary (Flux

B

C
which shows a linear increase in ¢, with increasing o, .

A flow system shown in Figure 4 was set to compute hy-
draulic head and its covariance for the changes in the variance
of the logconductvity. The numerical results of the present
study also show a linear increase in of with the increase in of.
The linear relationships appear at all nodes but Ag,/Acy,
changes. The values of Ag, /Ao, around the central part of the
domain are higher than those near the constant-head boundary.

The effect of changes in 67 at several selected nodes can be
found in Figure 5. my and A, are fixed at 3.5 and 0.01, respec-

tively, and the logtransmissivity field is generated for 100 times.

Effects of changes in the correlation scale of logcon-

ductivity

The variance of head at each node was computed for sev-
eral different correlation functions by changing A,. For the

one-lag correlation function, 4, was taken as 2, 4, 6, 8 and
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5.0 m®/day per unit area (m?))

10. That is, the correlation functon has the forms of oy exp( -
1/2), oyexp(—1/4), etc. It was expected that the vriance of
head increases as the correlation scale increases. In other
words,a Ipwer variance of head was expected when the con-
ductivities in the flow domain are less correlated with each
other. The variance computatons of the hydraulic head with
changes in correlation scale are shown in Figure 6 which
shows almost linear increase in the head variance with the in-

crease in the correlation scale.

Effects of pumping

The results of the previous numerical experiments in the
present study were generated when there was no pumping.
To estimate the effect of pumping, a well is located at the
center node. All boundaries are set to be constant-head boun-
daries to remove significant modeling effects other than pump-
ing. The variance of piezometric head has a distribution pat-

tern similar to the head drawdown as shown in Figure 7.
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Figure 8(a). Head covariance distribution for the boundary con-
dition setting #1.

1000 2000 3000 4000 5000 60.00 70.00 80.00 ©0.00 100.00 110.00

(o)

8(b). Cross-covariance of the head with the logcon-

Figure
ductivity for the boundary condition setting #1.

Three pairs of curves in Figure 7 show that the head variance
increases with the increase of the pumping rate.

Effects of changes in the boundary condition and

boundary head

Three types of boundaries in terms of flow conditions are
used to examine the effect on the head field and its related
statistics. Figures 812 show the effect of boundary con-
ditions and boundary heads to the pumping in terms of the
head variance (Figures 8(a)- 12(a)) and the cross-covariance
of the head with the logconductivity (Figures 8(b) - 12(b)). A
pumping well with a pumping rate 300 m®/day is located at
(30 m, 60 m) of the 120 m x 120 m flow domain. Each one
of the top, the bottom, the left and the right boundaries of
the rectangular flow domain is designed to have one of the

96

o |
00 1000 2000 3000 40.00 5000 BODO 7000 8000 ©0.00 100.00 110.00 12000

(a)

9(a). Head covariance distribution for the boundary con-

Figure
dition setting #2.
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Figure 9(b). Cross-covariance of the head with the logcon-
ductivity for the boundary condition setting #2.

specified-head, the no-flow, and the specified-flux (non - zero)
boundary conditions. The flow conditions assigned to the
boundaries are subject to change according to the com-
bination of the boundary conditions to examine the change in
head field associated with the boundary conditions.

Five different settings in Table 1 are used to simulate the
groundwater flow. The computed head field is used for the
analysis of ensemble statistics. The no-flow boundaries gen-
erally affects the head field more than the specified - head or
the specified - flux boundaries. The variance of the head and
the cross-covariance between the logconductivity and the
head have distribution patterns influenced mostly by the no
flow boundary.

The head variance has a similar distribution pattern as the
drawdown trend. The cross-covariances have somewhat com-
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Figure 10(a). Head covariance distribution for the
condition setting #3.

boundary

m2/day
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Figure 10(b). Cross-covariance of the head with the logcon-
ductivity for the boundary condition setting #3.

plicated distributions. From the fixed-head the cross-co-
variance tends to increase to the source of an aquifer stress
(Figures 8, 9, 10, and 12). The no-flow boundary rebounds
propagated stress back to the domain causing a fluctuating dis-
tribution (Figure 8). The specified-flux boundary in Figure 9
is a positive stress while the pumping well is a negative stress.
These positive and negative stresses are mutually attenuated
to make a fringe of negative cross-covariance along the bot-

tom boundary (Figure 9).

Zone of influence in terms of cross-correlation
The cross - covariance of head with the logconductivity has
both the positive and the negative values irregularly spread over

the flow domain. The cross-covariance ¢y, seems to have a dis-

tribution pattern in the flow domain. As Figures 8 - 12 show
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Figure 11(a). Head covariance distribution for the boundary
condition setting #4.

10.00 2000 3000 4000 50.00 6000 70.00 80.00 9000 100.00 110.00
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Figure 11(b). Cross-covariance of the head with the logcon-
ductivity for the boundary condition setting #4.

the negative (Figures 9 and 12) or infinitesimal (Figures 8, 10,
and 11) value of cross-covariance is locating over the area which
is weakly responding to the perturbation of the flow system
caused by point sources and/or line sources such as flow boun-
daries.

Basically the zone of influence (ZOI) is literally meant as
the zone within which head field is affected by a stress change
in the hydrologic system. Theoretically there is no point or
section inside the flow domain which is independent of any
kind of stress change. The difference between the zone of in-
fluence and the other zone is that the head change is no-
ticeable in the zone of influence whereas the head change,
outside the zone, is an infinitesimal value or is not important
compared with the magnitude of total head changes. De-
termination of the zone of influence is, therefore, somewhat
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Figure 12(a). Head covariance distribution for the boundary
condition setting #5.

m2/day
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Figure 12(b). Cross-covariance of the head with the logeon
ductivity for the boundary condition setting #5.

subjective unless we define the whole flow domain as the
zone of influence. At the same time the determination of a fin-
ite zone under the name of zone of influence is a practical
and very important in establishing a plan for the groundwater
protection from contamination and exhaustion.

Practically it is not easy to exactly delineate the zone of in-
fluence when the flow domain is subject to uncertainty in hy-
draulic parameters. In this case the stochastic approach and its
resulting ensemble statistics can be used to clearly define and

to delineate the zone of influence.
CONCLUSION

The numerical results estimate the influences of logtransmis-

sivity, correlation scale, boundary conditions and pumping to
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the variance of the head field. The head covariance increases
with the increase in the variance of logconductivity or corre-
lation scale. Pumping wells give a highly increased variance of
the head especially in the vicinity of the wells. Therefore, the
general trends of the head - variance with the changes in in-
put parameters coincide with the resuits by Smith and Freeze
(1979a ; b), Gelhar (1986) and Jones (1989).

The cross-covariance computations between the head and the
logtransmissivity were expected to show negative values at all
nodes because low values of transmissivity in a certain area tends
to increase the slope of the head in the same area. However, the
cross-covariance computed in several virtual settings shows values
both positive and negative (Figures 9 and 12).

It is not surprising, however, because the cross — covariance
of the head with the logtransmissivity shows, even in one-di-
mensional bounded domain, both positive and negative values
as shown by Kiranidis (1989).

It seems that the zone of the negative cross - covariance is
resulted by a combined effect of several factdrs such as the
boundary condition, the geometry of the flow domain, and
the distance of boundaries from the source of aquifer stresses.
The exact relation between those factors with the cross-co-
variance is not clear yet.

The zone of negative cross— covariance or infinitesimal
cross-covariance closely matches the area not significantly in-
fluenced by aquifer stresses. The stochastic approach, there-
fore, has a potential to be used to quantitatively delineate the
zone of influence through computations of the cross— co-

variance distribution.
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