• 제목/요약/키워드: flow direction method

검색결과 708건 처리시간 0.025초

Research on the Characteristics of Chinese Tourists Flow to Thailand: Application of the Social Network Analysis (SNA) Method

  • WANG, Xiao-Chuan;WANG, Chun-Yan;KIM, Hyung-Ho
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제8권11호
    • /
    • pp.243-251
    • /
    • 2021
  • The goal of this study is to examine the characteristics of Chinese visitors visiting Thailand, determine the rules, and give a reference for Thai tourism authorities and businesses when developing marketing strategies for the Chinese market. This paper constructs the tourism flow network and takes Bangkok as the major research target. The statistical characteristics of the network are studied using the SNA method, based on the trip notes of Thailand on www.mafengwo.cn, a prominent travel website in China as the data source. The results show that: Shanghai, Beijing, and Tianjin occupy important positions in the network; The flow direction of Chinese tourists to Thailand mainly tends to Bangkok, Chiang Mai, Pattaya, and Phuket Island; Grand Palace have strong tourism flow aggregation, diffusion, and control over other nodes in the whole network structure; Tom Yu Kuang has the greatest degree centrality in all Thai cuisine. The findings of the study can help relevant management departments create tourist policies and modify market strategies by developing the regular characteristics of China's tourism flow to Thailand in the theoretical field.

Influence of Blade Number on the Flow Characteristics in the Vertical Axis Propeller Hydro Turbine

  • Byeon, Sun-Seok;Kim, Youn-Jea
    • International Journal of Fluid Machinery and Systems
    • /
    • 제6권3호
    • /
    • pp.144-151
    • /
    • 2013
  • In this paper, the design method of a low-head propeller-type hydro turbine is studied for various numbers of blades on an axial propeller. We also investigate the relationship between geometrical parameters and internal performance parameters, such as angular velocities (100, 200, 300, 400 rpm) and 2.5~4m low heads through a three-dimensional numerical method with the SST turbulent model. The numerical results showed that the blade number had a more dominant influence than the change in heads and rotational speed on the flow characteristics of the turbine. The distributions of pressure and velocity in the streamwise direction of the propeller turbine were graphically depicted. Especially, the relationship among dimensionless parameters like specific speed ($N_s$), flow coefficient (${\phi}$) and power coefficient (P) were investigated.

Analysis of natural frequencies of delaminated composite beams based on finite element method

  • Krawczuk, M.;Ostachowicz, W.;Zak, A.
    • Structural Engineering and Mechanics
    • /
    • 제4권3호
    • /
    • pp.243-255
    • /
    • 1996
  • This paper presents a model of a layered, delaminated composite beam. The beam is modelled by beam finite elements, and the delamination is modelled by additional boundary conditions. In the present study, the laminated beam contains only one delaminated region through the thickness direction which extends to the full width of the beam. It is also assumed that the delamination is open. The influence of the delamination length and position upon changes in the bending natural frequencies of the composite laminated cantilever beam is investigated.

5공프로브의 전 각도 범위 압력계수 지도와 새로운 보정계수 (Full angle range pressure coefficient maps of five-hole probe and new calibration coefficients)

  • 김진권;강신형
    • 대한기계학회논문집B
    • /
    • 제21권11호
    • /
    • pp.1437-1448
    • /
    • 1997
  • Pressures of a five-hole probe were measured for a full range of yaw and pitch angles and complete pressure coefficient maps were obtained. Based on these maps, various features of five-hole probe pressures were revealed and new five-hole probe calibration coefficients were devised. The new calibration coefficients show non-diverging characteristics for any flow direction and one-to-one correspondence for a wide range of flow angles. These calibration coefficients expand the valid flow angle range of five-hole probe calibration by .+-.10 degrees and complement a critical defect of five-hole probe zone-division calibration method which has not been known yet. Moreover new non-diverging calibration coefficients have advantages in nulling methods, too.

Vision-Based Indoor Localization Using Artificial Landmarks and Natural Features on the Ceiling with Optical Flow and a Kalman Filter

  • Rusdinar, Angga;Kim, Sungshin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제13권2호
    • /
    • pp.133-139
    • /
    • 2013
  • This paper proposes a vision-based indoor localization method for autonomous vehicles. A single upward-facing digital camera was mounted on an autonomous vehicle and used as a vision sensor to identify artificial landmarks and any natural corner features. An interest point detector was used to find the natural features. Using an optical flow detection algorithm, information related to the direction and vehicle translation was defined. This information was used to track the vehicle movements. Random noise related to uneven light disrupted the calculation of the vehicle translation. Thus, to estimate the vehicle translation, a Kalman filter was used to calculate the vehicle position. These algorithms were tested on a vehicle in a real environment. The image processing method could recognize the landmarks precisely, while the Kalman filter algorithm could estimate the vehicle's position accurately. The experimental results confirmed that the proposed approaches can be implemented in practical situations.

수직관에서 상승하는 Taylor 기포의 수치해석 (Numerical Simulation of a Taylor Bubble Rising in a Vertical Tube)

  • 손기헌
    • 대한기계학회논문집B
    • /
    • 제25권3호
    • /
    • pp.373-380
    • /
    • 2001
  • In this study, a single Taylor bubble and a train of Taylor bubbles rising in a vertical tube were simulated numerically. A finite difference method was used to solve the mass and momentum equations for the liquid-gas region. The liquid-gas interface was captured by a level set function which is defined a signed distance from the interface. For a train of Taylor bubbles repeated periodically in space, the periodic conditions were imposed at the boundaries normal to the gravitational direction and the pressure boundary conditions were iteratively determined so that the computed flow rate should be equal to a given flow rate. Based on the numerical simulation, the calculated shape and rise velocity of a Taylor bubble were found to be in good agreement with the experimental data reported in the literature.

다단축류압축기의 공력성능 예측용 계산격자 생성기법 연구 (Computational Grid Generation for Aero-Performance Prediction of Multi-staged Axial Compressors)

  • 정희택;김주섭
    • 동력기계공학회지
    • /
    • 제2권1호
    • /
    • pp.39-44
    • /
    • 1998
  • Computational grids used in the numerical simulation of multi staged turbomachinery flow fields are generated. A multiblock structure simplifies the creation of structured H-grids about complex turbomachinery geometries and facilitate the creation of a grid for multi-row topologies. The numerical algorithm adopts the combination of the algebraic and elliptic method to create the internal grids efficiently and quickly. The input module is made of the results of the preliminary design, i.e., flow-path, aerodynamic conditions along the spanwise direction, and the blade profile data. The final grids generated from each module of the system are used as the preprocessor for the performance prediction of the single row cascades and the flow simulation inside the multi staegd blade passage. Application to low pressure compressor of industrial gas turbine engines was demonstrated to be very reliable and practical in support of design activities.

  • PDF

FINITE ELEMENT MODELING FOR HYDRODYNAMIC AND SEDIMENT TRANSPORT ANALYSIS (I) : HYDRODYNAMIC STUDY

  • Noh, Joon-Woo
    • Water Engineering Research
    • /
    • 제4권2호
    • /
    • pp.87-97
    • /
    • 2003
  • In this study, using the numerical model, the flow motion around skewed abutment is investigated to evaluate the skewness effect on the flow distribution. The skewness angle of the abutment which make with main flow direction is changed from $30\circ$ to $150\circ$ with increments of $10\circ$ while the contraction ratios due to the abutment are kept constant. For the investigation of the combined effects on the relationship between the skewness angle and flow intensities, this process will be .repeated fer different types of abutment (single and double) with different flow intensities. The maximum velocities and the velocity distributions, which can be obtained from each angle, are examined and analyzed corresponding to different angles of inclination. Based on successive model applications, an empirical expression, given in a function of contracted ratio and skewness angle, is derived for relating velocity amplifications according to the angle variations.

  • PDF

Hydraulic Model Test of a Floating Wave Energy Converter with a Cross-flow Turbine

  • Kim, Sangyoon;Kim, Byungha;Wata, Joji;Lee, Young-Ho
    • International Journal of Fluid Machinery and Systems
    • /
    • 제9권3호
    • /
    • pp.222-228
    • /
    • 2016
  • Almost 70% of the earth is covered by the ocean. Extracting the power available in the ocean using a wave energy converter has been seen to be eco-friendly and renewable. This study focuses on developing a method for analyzing a wave energy device that uses a cross-flow turbine. The motion of the ocean wave causes an internal bi-directional flow of water and the cross-flow turbine is able to rotate in one direction. This device is considered of double-hull structure, and because of this structure, sea water does not come into contact with theturbine. Due to this, the problem of befouling on the turbine is avoided. This study shows specific relationship for wave length and several motions.

원형 핀이 부착된 실린더 주위의 유체 유동에 관한 수치적 연구 (A Numerical Study on the Fluid Flow Past a Cylinder with a Periodic Array of Circular Fins)

  • 이동혁;하만영
    • 대한기계학회논문집B
    • /
    • 제29권12호
    • /
    • pp.1344-1351
    • /
    • 2005
  • Three-dimensional, time-dependent solutions of fluid flow past a circular cylinder with a periodic array of circular fins are obtained using an accurate and efficient spectral multidomain methodology. A Fourier expansion with a corresponding uniform grid is used along the circumferential direction. A spectral multidomain method with Chebyshev collocation is used along the r-z plane to handle the periodic array of circular fins attached to the surface of the cylinder. Unlike the flow past a circular cylinder, Second instabilities like mode A and mode B are not found in the Reynolds number range $100\~500$. It is found that three-dimensional instability of vortical structures is suppressed due to the presence of fin. The present numerical solutions report the detailed information of flow quantities near wake of finned cylinder.