• 제목/요약/키워드: flow cell

검색결과 3,119건 처리시간 0.029초

녹용(鹿茸)이 in vitro에서 자궁근종세포(子宮筋腫細胞)에 미치는 영향 (Effects of Cervi Pontotrichum Cornu on Human Uterine Leiomyoma Cell in vitro)

  • 이윤재;조정훈;이창훈;이진무;장준복;이경섭
    • 대한한방부인과학회지
    • /
    • 제21권2호
    • /
    • pp.17-26
    • /
    • 2008
  • Purpose: This study was conducted to investigate the effects of Cervi Pontotrichum Cornu extract solution on the cell cycle regulation and apoptosis in human leiomyoma cell. Methods: The leiomyoma cell of patients was used in the study, and we administered the extract solution of Cervi Pontotrichum Cornu concentration at 1, $10mg/m{\ell}$ to the leiomyoma cell for 48 hours. We used flow cytometry and western blotting to confirm cell cycle and apoptosis. Results: In flow cytometry, G1 phase of the $1mg/m{\ell}$ group prolonged. But G1 phase of $10mg/m{\ell}$ group was shortened and S phase was increased. Cyclin D1 expression increased in higher concentration group. And Bax expression that regulates cell apoptosis increased in $1mg/m{\ell}$ and $10mg/m{\ell}$ group than control group. Bcl-2 expression decreased in 1, $10mg/m{\ell}$ groups than control group. VEGF expression rised in higher Cervi Pontotrichum Cornu concentration group. Conclusion: This study means that Cervi Pontotrichum Cornu could induce the apoptosis of leiomyoma cell by increasing Bax and decreasing Bcl-2 expression. But Cervi Pontotrichum Cornu could increase Cyclin D1 and VEGF expression, so more detailed studies would be needed.

  • PDF

Effects of OH Radical Density from Atmospheric Plasma to Induce Cell Death in Lung Cancer and Normal Cells

  • 박대훈;김용희;심건보;백구연;엄환섭;최은하
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.254.1-254.1
    • /
    • 2014
  • Atmospheric plasma's electron temperature is less than thermal plasma, so it is useful at bio experiment. We have investigated the optical emission spectroscopy (OES) lines by spectrometer during Atmospheric plasma bombardment onto the PBS surface by using an Ar gas flow. Also we have measured the OH radical density inside the solution induced by the Atmospheric plasma bombardment. OH radical species are appeared at 308 nm and 309 nm. Densities of OH radical species has been found to be significantly decreased versus depth of the solution from 2 mm to 6 mm. OH radical density inside the PBS is measured to be about $1.87{\times}1016cm-3$ downstream at 2 mm from the surface under optimized Ar gas flow of 200 sccm in Atmospheric plasma. Also we have investigated cell viability of lung cancer and normal cell after Atmospheric plasma treatment for fixed exposure time in 60 seconds, but different depths. We used SEM, we observed change of cell morphorogy, did experiment about FDA & PI Staining method. It is found that there is selectivity between the lung cancer and lung normal cell, in which cancer cell definitely has higher cell death ratio more than normal cell. We have investigated change of bond structure in FT-IR spectroscopy, the following peaks were observed: and intense O-H peak at 3422 cm-1 and at 2925 cm-1 corresponds to C-H stretch vibrations of methylene group.

  • PDF

S Phase Cell Cycle Arrest and Apoptosis is Induced by Eugenol in G361 Human Melanoma Cells

  • Rachoi, Byul-Bo;Shin, Sang-Hun;Kim, Uk-Kyu;Hong, Jin-Woo;Kim, Gyoo-Cheon
    • International Journal of Oral Biology
    • /
    • 제36권3호
    • /
    • pp.129-134
    • /
    • 2011
  • Eugenol is an essential oil found in cloves and cinnamon that is used widely in perfumes. However, the significant anesthetic and sedative effects of this compound have led to its use also in dental procedures. Recently, it was reported that eugenol induces apoptosis in several cancer cell types but the mechanism underlying this effect has remained unknown. In our current study, we examined whether the cytotoxic effects of eugenol upon human melanoma G361 cells are associated with cell cycle arrest and apoptosis using a range of methods including an XTT assay, Hoechst staining, immunocyto-chemistry, western blotting and flow cytometry. Eugenol treatment was found to decrease the viability of the G361 cells in both a time- and dose-dependent manner. The induction of apoptosis in eugenol-treated G361 cells was confirmed by the appearance of nuclear condensation, the release of both cytochrome c and AIF into the cytosol, the cleavage of PARP and DFF45, and the downregulation of procaspase-3 and -9. With regard to cell cycle arrest, a time-dependent decrease in cyclin A, cyclin D3, cyclin E, cdk2, cdk4, and cdc2 expression was observed in the cells after eugenol treatment. Flow cytometry using a FACScan further demonstrated that eugenol induces a cell cycle arrest at S phase. Our results thus suggest that the inhibition of G361 cell proliferation by eugenol is the result of an apoptotic response and an S phase arrest that is linked to the decreased expression of key cell cycle-related molecules.

무인항공기용 150W급 연료전지 동력원 개발 및 실증 (Development and Demonstration of 150W Fuel Cell Propulsion System for Unmanned Aerial Vehicle (UAV))

  • 양철남;김양도
    • 한국수소및신에너지학회논문집
    • /
    • 제23권4호
    • /
    • pp.300-309
    • /
    • 2012
  • Long endurance is a key issue in the application of unmanned aerial vehicles. This study presents feasibility test results when fuel cell system as an alternative to the conventional engine is applied for the power of the UAV after the 150W fuel cell system is developed and packaged to the 1/4 scale super cub airplane. Fuel cell system is operated by dead-end method in the anode part and periodically purged to remove the water droplet in flow field during the operation. Oxygen in the air is supplied to the stack by the two air blowers. And fuel cell stack is water cooled by cooling circuit to dissipate the heat generated during the fuel cell operation. Weight balance is considered to integrate the stack and balance of plant (BOP) in package layout. In flight performance test, we demonstrated 4 times standalone take-off and landing. In the laboratory test simulating the flight condition to quantify the energy flow, the system is analyzed in detail. Sankey diagram shows that electric efficiency of the fuel cell system is 39.2%, heat loss 50.1%, parasitic loss 8.96%, and unreacted purged gas 1.67%, respectively compared to the total hydrogen input energy. Feasibility test results show that fuel cell system is high efficient and appropriate for the power of UAV.

Combined Effect of Catholyte Gap and Cell Voltage on Syngas Ratio in Continuous CO2/H2O Co-electrolysis

  • Ha, Min Gwan;Na, Youngseung;Park, Hee Young;Kim, Hyoung-Juhn;Song, Juhun;Yoo, Sung Jong;Kim, Yong-Tae;Park, Hyun S.;Jang, Jong Hyun
    • Journal of Electrochemical Science and Technology
    • /
    • 제12권4호
    • /
    • pp.406-414
    • /
    • 2021
  • Electrochemical devices are constructed for continuous syngas (CO + H2) production with controlled selectivity between CO2 and proton reduction reactions. The ratio of CO to H2, or the faradaic efficiency toward CO generation, was mechanically manipulated by adjusting the space volume between the cathode and the polymer gas separator in the device. In particular, the area added between the cathode and the ion-conducting polymer using 0.5 M KHCO3 catholyte regulated the solution acidity and proton reduction kinetics in the flow cell. The faradaic efficiency of CO production was controlled as a function of the distance between the polymer separator and cathode in addition to that manipulated by the electrode potential. Further, the electrochemical CO2 reduction device using Au NPs presented a stable operation for more than 23 h at different H2:CO production levels, demonstrating the functional stability of the flow cell utilizing the mechanical variable as an important operational factor.

분할격자체계를 이용한 천수흐름 수치모형의 개발 (Development of a Numerical Model of Shallow-Water Flow using Cut-cell System)

  • 김형준;이승오;조용식
    • 한국방재학회 논문집
    • /
    • 제8권4호
    • /
    • pp.91-100
    • /
    • 2008
  • 본 연구는 Cartesian 격자망을 기본으로 하여 복잡한 지형을 위한 격자를 간편하고 효율적으로 생성할 수 있는 기법인 분할격자체계를 제안하고자 한다. 분할격자기법은 전반적인 흐름영역의 격자는 균일한 크기의 Cartesian 격자로 표현하지만 수치모형의 정확성, 적용성 및 효율성을 증대시키기 위하여 흐름의 특성이 변하는 격자를 분할하여 처리하는 기법이다. 분할격자체계에 의한 격자망은 다양한 크기 및 형상을 지니게 되므로, 유한체적기법을 적용하여 복잡한 흐름영역을 위한 수치모형을 구성한다. HLLC Riemann 근사해법을 이용하여 지배방정식을 이산화하였으며, 수치해의 안정성을 기하기 위하여 TVD-WAF기법을 적용하였다. 분할격자체계를 이용한 수치모형을 검증하기 위하여 해석해가 존재하는 사각형수조의 자유진동흐름을 모의하였다. 해석해와 수치모의 결과를 비교하여 본 연구에서 제안된 기법이 균일격자 및 분할격자체계에서 자유수면변위 및 x-축 및 y-축 방향의 유속을 정확히 모의함을 확인하였다.

메타세콰이어, 카담, 물푸레나무 세포내강의 액체이동 (Capillary Flow in Different Cells of Metasequoia glyptostroboides, Anthocephalus cadamba, and Fraxinus rhynchophylla)

  • 전수경
    • 한국가구학회지
    • /
    • 제29권1호
    • /
    • pp.1-7
    • /
    • 2018
  • A study was carried out to observe the 1% aqueous safranine solution flow speed in longitudinal and radial directions of softwood Metasequoia glyptostroboides, diffuse-porous wood Anthocephalus cadamba and ring-porouswood Fraxinus rhynchophylla. In radial direction, ray cells and in longitudinal direction, tracheids, vessel and wood fiber were considered for the measurement of liquid penetration speed at less than 12% moisture contents (MC). The length, lumen diameter, pit diameter, end wall pit diameter and the numbers of end wall pits determined for the flow rate. The liquid flow in the those cells was captured via video and the capillary flow rate in the ones were measured. Vessel in hardwood species and tracheids in softwood was found to facilitate prime role in longitudinal penetration. Anatomical features like the length and diameter, end-wall pit numbers of ray parenchyma were found also responsible fluid flow differences. On the other hand, vessel and fiber structure affected the longitudinal flow of liquids. Therefore, the average liquid penetration depth in longitudinal tracheids of Metasequoia glyptostroboides was found the highest among all cells considered in Anthocephalus cadamba and Fraxinus rhynchophylla In radial direction, ray parenchyma of Metasequoia glyptostroboides was found the highest depth and the one of Fraxinus rhynchophylla was the lowest. The solution was penetrated lowest depth in the wood fiber of Fraxinus rhynchophylla. The large vessel of Fraxinus rhynchophylla was found the lowest depth among the vessels. The solutin was penetrated to the wood fiber of Anthocephalus cadamba higher than the one of Fraxinus rhynchophylla.

  • PDF

일본잎갈나무, 물박달나무, 밤나무 세포내강의 액체이동 (Capillary Flow in Different Cells of Larix Kaempferi, Betula Davurica, Castanea crenata)

  • 전수경
    • 한국가구학회지
    • /
    • 제28권1호
    • /
    • pp.88-93
    • /
    • 2017
  • A study was carried out to observe the 1% aqueous safranine solution flow speed in longitudinal and radial directions of softwood Larix kaempferi (Lamb.)Carriere, diffuse-porous wood Betula davurica Pall.. and ring-porouswood Castanea crenata S.etZ. In radial direction, ray cells and in longitudinal direction, tracheids, vessel and wood fiber were considered for the measurement of liquid penetration speed at less than 12% moisture contents (MC). The length, lumen diameter, pit diameter, end wall pit diameter and the numbers of end wall pits determined for the flow rate. The liquid flow in the those cells was captured via video and the capillary flow rate in the ones were measured. Vessel in hardwood species and tracheids in softwood was found to facilitate prime role in longitudinal penetration. Anatomical features like the length and diameter, end-wall pit numbers of ray parenchyma were found also responsible fluid flow differences. On the other hand, vessel and fiber structure affected the longitudinal flow of liquids. Therefore, the average liquid penetration depth in longitudinal tracheids of Larix kaempferi was found the highest among all cells considered in Betula davurica and Castanea crenata, In radial direction, ray parenchyma of Larix kaempferi was found the highest depth and the one of Betula davurica was the lowest. The solution was penetrated lowest depth in the wood fiber of Castanea crenata. The large vessel of Castanea crenata was found the lowest depth among the vessels. The solutin was penetrated to the wood fiber of Betula davurica higher than the one of Castanea crenata.

사행수로에서 유속구조가 추적물질의 혼합에 미치는 영향 (Effects of Velocity Structures on Tracer Mixing in a Meandering Channel)

  • 서일원;박성원
    • 대한토목학회논문집
    • /
    • 제29권1B호
    • /
    • pp.35-45
    • /
    • 2009
  • 본 연구에서는 사행수로에서 유속구조가 추적물질의 혼합에 미치는 영향을 분석하기 위하여 2개의 만곡부를 갖는 S자형 실험수로를 제작하여 순간 주입된 추적자물질에 대한 분산실험을 수행하였다. 실험자료를 분석한 결과, 주 흐름은 사행수로의 최단경로를 따라 이동하며 만곡부에서 불균일한 분포를 갖는 것으로 밝혀졌다. 이차류의 경우, 만곡부에서 강력한 셀이 발달하나 직선부에서는 소멸하다가 다시 다음 만곡부에 반대 방향의 셀로 재생성됨이 확인되었다. 오염운의 거동은 주흐름의 불균일한 분포와 이차류셀에 의해 매우 큰 영향을 받는 것으로 나타났다. 주흐름의 불균일한 분포는 오염운을 종방향으로 분리시키고, 이차류 셀은 만곡부 외측의 처진 오염운을 횡방향으로 더욱 분리시키는 역할을 하게 되어, 결과적으로 만곡부의 복잡한 유속구조가 오염운을 종 횡방향으로 모두 분리시키고 나아가서 많이 퍼지게 하는 작용을 하는 것으로 밝혀졌다. 2차원 추적법의 적용을 통해서 각 케이스별 종 횡분산계수 실측치를 산정한 결과, 사행수로 전체구간에 대한 무차원 횡분산계수는 0.012~0.875의 범위를 갖는 것으로 밝혀졌다. 횡분산계수는 하폭 대 수심비에 대체적으로 비례하는 것으로 나타났다. 횡분산계수 이론식에 의한 추정치와 비교한 결과, 이론치가 실측치와 비교하여 다소 과대 산정하는 경향을 보여주고 있음을 알 수 있었다.