• Title/Summary/Keyword: flow Radius

Search Result 537, Processing Time 0.03 seconds

Numerical Analysis of Hypersonic Flow over Small Radius Blunt Bodies (작은 크기의 무딘 물체에 대한 극초음속 유동의 수치해석)

  • Lee Chang Ho;Park Seung O
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.05a
    • /
    • pp.109-114
    • /
    • 2002
  • The effect of nose radius on aerodynamic heating are investigated by using the Wavier-Stokes code extended to thermochemical nonequilibrium airflow. A spherical blunt body, whose radius varies from 0.003048 m to 0.6096 m, flying at Mach 25 at an altitude of 53.34 km is considered. Comparison of heat flux at stagnation point with the solution of Viscous Shock Layer and Fay-Riddell are made. Obtained result reveals that the flow chemistry for very small radius is nearly frozen, and therefore the contribution of heat flux due to chemical diffusion is smaller than that of translational energy. As the radius becomes larger, the portion of diffusion heat flux becomes greater than translational heat flux and approaches to a constant value.

  • PDF

Permeability-increasing effects of hydraulic flushing based on flow-solid coupling

  • Zhang, Jiao;Wang, Xiaodong
    • Geomechanics and Engineering
    • /
    • v.13 no.2
    • /
    • pp.285-300
    • /
    • 2017
  • Shallow coal resources are increasingly depleted, the mining has entered the deep stage. Due to "High stress, high gas, strong adsorption and low permeability" of coal seam, the gas drainage has become more difficult and the probability of coal and gas outburst accident increases. Based on the flow solid coupling theory of coal seam gas, the coupling model about stress and gas seepage of coal seam was set up by solid module and Darcy module in Comsol Multiphysics. The gas extraction effects were researched after applying hydraulic technology to increase permeability. The results showed that the effective influence radius increases with the expanded borehole radius and drainage time, decreases with initial gas pressure. The relationship between the effective influence radius and various factors presents in the form: $y=a+{\frac{b}{\left(1+{(\frac{x}{x_0})^p}\right)}}$. The effective influence radius with multiple boreholes is obviously larger than that of the single hole. According to the actual coal seam and gas geological conditions, appropriate layout way was selected to achieve the best effect. The field application results are consistent with the simulation results. It is found that the horizontal stress plays a very important role in coal seam drainage effect. The stress distribution change around the drilling hole will lead to the changes in porosity of coal seam, further resulting in permeability evolution and finally gas pressure distribution varies.

Forming Characteristics of the Forward and Backward Tube Extrusion Using Pipe (중공축 소재를 이용한 전후방 복합압출의 성형 특성)

  • Kim S. H.;Lee H. Y.
    • Transactions of Materials Processing
    • /
    • v.14 no.9 s.81
    • /
    • pp.772-778
    • /
    • 2005
  • This paper is concerned with the analysis of material flow characteristics of combined tube extrusion using pipe. The analysis in this paper concentrated on the evaluation of the design parameters for deformation patterns of tube forming, load characteristics, extruded length, and die pressure. The design factors such as punch nose radius, die corner radius, friction factor, and punch face angle are involved in the simulation. The combined tube extrusion is analyzed by using a commercial finite element code. This simulation makes use of pipe material and punch geometry on the basis of punch geometry recommended by International Cold Forging Group. Deformation patterns and its characteristics in combined forward and backward tube extrusion process were analyzed for forming loads with primary parameters, which are various punch nose radius relative to backward tube thickness. The results from the simulation show the flow modes of pipe workpiece and the die pressure at the contact surface between pipe workpiece and punch. The specific backward tube thickness and punch nose radius have an effect on extruded length in combined extrusion. The combined one step forward and backward extrusion is compared with the two step extrusion fer forming load and die pressure.

Effect of the Nozzle Curvature on Critical Flows (임계노즐 유동에 미치는 노즐 곡률의 영향)

  • Kim, Jae-Hyung;Kim, Heuy-Dong;Park, Kyung-Am
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.331-336
    • /
    • 2002
  • Recently the critical nozzles with small diameter are being extensively used to measure mass flow in a variety of industrial fields and these have different configurations depending on operation condition and working gas. The curvature radius of the critical nozzle throat is one of the most important configuration factors promising a high reliability of the critical nozzle. In the present study, computations using the axisymmetric, compressible, Navier-Stokes equations are carried out to investigate the effect of the nozzle curvature on critical flows. The diameter of the critical nozzle employed is D=0.3mm and the radius of curvature of the critical nozzle throat is varied in the range from 1D to 3D. It is found that the discharge coefficient is very sensitive to the curvature radius(R) of critical nozzle, leading to the peak discharge coefficient at R = 2.0D and 2.5D, and that the critical pressure ratio increases with the curvature radius.

  • PDF

On the Design Parameters of Gerotor Hydraulic Motors (제로터 유압 모터의 설계 변수에 관한 연구)

  • 김충현;김두인;안효석;정태형;이성철
    • Tribology and Lubricants
    • /
    • v.15 no.1
    • /
    • pp.17-23
    • /
    • 1999
  • A Gerotor hydraulic motor is a planar mechanism consisting of a pair of rotors one of which encloses another rotor. The motion of the inner-rotor relative to the outer-rotor is produced by the pressure difference between the adjacent chambers. A design method of inner-rotor tooth profile using unit tangential vectors is presented in this work. Based on the relationships derived, the influence of the eccentricity of inner-rotor and the radius of circular arc tooth on the flow rate, torque and curvatures were investigated. It was shown that the flow rate and mean torque is proportional to eccentricity, but inversely proportional to the radius of circular arc teeth. Also, the maximum value of the equivalent curvature is increased as the eccentricity and the radius of circular arc teeth increased.

Friction Factors for Flow in Concentric Annuli with Rib-Roughened Wall (돌출형 거칠기벽이 있는 동심환형관의 유동에 대한 마찰계수)

  • Ahn, Soo Whan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.5
    • /
    • pp.587-592
    • /
    • 1999
  • The combined effects of radius ratio and roughness pitch ratio on the turbulent fluid flow characteristics of the fully developed flow in the annullar tubes with rib-roughened core walls were determined for Reynolds number ranging from 12,000 to 66,000. To understand the underlying physical phenomena responsible for friction factor enhancement, measurements of velocity profiles and zero shear stress and maximum velocity positions were combined to propose the friction factor correlation. Friction factors were found to be a function of the roughness pitch ratio and radius ratio.

Effect of Secondary Flow on a Premixed Flame in the U-bend Nozzle (U-곡관 노즐에서 예혼합화염에 미치는 이차 유동의 영향)

  • Kim, H.G.;Cha, M.S.;Chung, S.H.
    • 한국연소학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.91-101
    • /
    • 1998
  • The effect of secondary flow on both methane/air and propane/air premixed flame was investigated experimentally. By changing the radius of curvature, various flame behavior was observed. In the V-bend nozzles, flame surface is deformed from axisymmetry. As the exit velocity increased, flame lifted off partially. When the radius of curvature of the V-bend increased, the region where premixed flame is entirely on the rim increased. Since the axial velocity field is changed due to the secondary flow effect, comparison of V-bend and straight tube with the same diameter shows larger V-bend nozzle exit velocity for both flash back and flame blowout. The flame characteristics are mapped with a equivalence ratio, a velocity, and a nozzle radius of curvature. To identify physical reasoning on the flame surface deformation, numerical calculations are conducted. OH radical distributions in flames are visualized by PLIF technique.

  • PDF

Effect of geometrical parameters of reentry capsule over flowfield at high speed flow

  • Mehta, R.C.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.4
    • /
    • pp.487-501
    • /
    • 2017
  • The main purpose of the paper is to analyze effect of geometrical parameters of the reentry capsules such as radius of the spherical cap, shoulder radius, back shell inclination angle and overall length on the flow field characteristics. The numerical simulation with viscous flow past ARD (Atmospheric Reentry Demonstrator), Soyuz (Russian) and OREX (Orbital Reentry EXperimental) reentry capsules for freestream Mach numbers range of 2.0-5.0 is carried out by solving time-dependent, axisymmetric, compressible laminar Navier-Stokes equations. These reentry capsules appear as bell, head light and saucer in shape. The flow field features around the reentry capsules such as bow shock wave, sonic line, expansion fan and recirculating flow region are well captured by the present numerical simulations. A low pressure is observed immediately downstream of the base region of the capsule which can be attributed to fill-up in the growing space between the shock wave and the reentry module. The back shell angle and the radius of the shoulder over the capsule are having a significant effect on the wall pressure distribution. The effects of geometrical parameters of the reentry capsules will useful input for the calculation of ballistic coefficient of the reentry module.

Structure Analyses of Rubber/Filler System under Shear Flow by Using Time Resolved USAXS Method

  • Nishitsuji, Shotaro;Takenaka, Mikihito;Amino, Naoya;Ishikawa, Yasuhiro
    • Elastomers and Composites
    • /
    • v.54 no.2
    • /
    • pp.156-160
    • /
    • 2019
  • The changes in the dispersion of carbon black in liquid polyisoprene under shear flow with time have been investigated by time-resolved ultra small-angle X-ray scattering (USAXS) method. The analyses of USAXS profile immediately after the start of shear flow clarified that the aggregates of carbon black with a mean radius of gyration of 14 nm and surface fractal dimension of 2.5 form the fractal network structure with mass-fractal dimension of 2.9. After the application of the shear flow, the scattering intensity increases with time at the observed whole entire q region, and then the a shoulder appears at $q=0.005nm^{-1}$, indicating that the agglomerate is broken and becomes smaller by shear flow. The analysis by the Unified Guinier/Power-law approach yielded several characteristic parameters, such as the sizes of aggregate and agglomerate, mass-fractal dimension of agglomerate, and surface fractal dimension of the primary particle. While the mean radius of gyration of the agglomerate decreases with time, the mean radius of gyration of the aggregate, mass fractal dimension, and surface fractal dimension don't change with time, indicating that the aggregates peel off the surface of the agglomerate.

CFD analysis of geometric parameters that affect dean flow in a helical microchannel

  • Prasad, Bibin;Kim, Jung Kyung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1269-1274
    • /
    • 2014
  • Due to the presence of Dean flow in curved ducts, helical channels have drawn attention recently because of the practical industrial applications. The manipulation of fluids through microfluidic devices is widely used in many scientific and industrial areas. In the present study, numerical simulations were performed on a helical microchannel to predict the impact of different design parameters that affect Dean flow. Important geometric parameters such as the channel cross section, pitch, radius of curvature, and number of turns were considered for the analysis. The study also incorporates the effect of varying flow rate on Dean flows. It was found from the simulation results that microchannel cross section and pitch have a significant impact on maintaining the Dean flow, compared to the radius of curvature, number of turns, and flow rate.