• Title/Summary/Keyword: flow Radius

Search Result 537, Processing Time 0.032 seconds

Development of a Kinematic Wave Model to Route Overland Flow in Vegetated Area (I) -Theory and Numerical Solution- (초지의 지표면 흐름을 추적하기위한 Kinematic Wave Model의 개발(I) -이론 Model의 개발-)

  • ;W.L.MAGETTE
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.2
    • /
    • pp.57-64
    • /
    • 1993
  • A modified kinematic wave model of the overland flow in vegetated filter strips was developed. The model can predict both flow depth and hydraulic radius of the flow. Existing models can predict only mean flow depth. By using the hydraulic radius, erosion, deposition and flow's transport capacity can be more rationally computed. Spacing hydraulic radius was used to compute flow's hydraulic radius. Numerical solution of the model was accomplished by using both a second-order nonlinear scheme and a linear solution scheme. The nonlinear portion of the model ensures convergence and the linear portion of the model provides rapid computations. This second-order nonlinear scheme minimizes numerical computation errors that may be caused by linearization of a nonlinear model. This model can also be applied to golf courses, parks, no-till fields to route runoff and production and attenuation of many nonpoint source pollutants.

  • PDF

Helical flow of Newtonian and non-Newtonian fluid in an nnulus (뉴튼 및 비뉴튼 유체의 헬리컬 유동에 관한 연구)

  • Woo, Nam-Sub;Seo, Byung-Taek;Bae, Kyung-Su;Hwang, Young-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1634-1639
    • /
    • 2004
  • The present study concerns a experimental study of fully developed laminar flow of a Newtonian and non-Newtonian fluid through a concentric annulus with a combined bulk axial flow and inner cylinder rotation for the various radius ratio. This study shows the fundamental difference between Newtonian and non-Newtonian fluid flow in an annulus for various radius ratio.

  • PDF

EFFECTS OF ROUNDING CORNERS ON THE FLOW PAST A SQUARE CYLINDER (정방형 실린더의 모서리 원형화에 따른 유동 불안정성의 변화)

  • Park, Doohyun;Yang, Kyung-Soo;Lee, Kyongjun;Kang, Changwoo
    • Journal of computational fluids engineering
    • /
    • v.19 no.1
    • /
    • pp.57-63
    • /
    • 2014
  • This study performed numerical analysis for the characteristics of flow-induced forces and the flow instability depending on the cross-sectional shape of the cylinder in laminar flow. To implement the cylinder cross-section, we adopted an Immersed Boundary Method with marker particles. We analyzed flow characteristics based on the radius of corner curvature. Main parameters are corner radius and Reynolds number (Re). With Re = 40, 50, 150 we calculated the flow field, drag coefficient, RMS of lift coefficient, pressure coefficient and Strouhal number in conjunction with the corner radius variation. Also, we calculated critical Reynolds number ($Re_c$) depending on the corner radius variation.

Effects of Nose Radius of Blunt Body on Aerodynamic Heating in Thermochemical Nonequilibrium Flow (무딘 물체의 노즈 반지름이 비평형 유동의 공력 가열에 미치는 영향)

  • Lee Chang Ho;Park Seung O
    • Journal of computational fluids engineering
    • /
    • v.8 no.4
    • /
    • pp.34-40
    • /
    • 2003
  • The effect of nose radius on aerodynamic heating is investigated by using the Navier-Stokes code extended to thermochemical nonequilibrium airflow, Spherical blunt bodies, whose nose radius varies from 0.O03048 m to 0.6096 m, flying at Mach 25 at an altitude of 53.34 km are considered. Comparison of heat flux at stagnation point with the solution of Viscous Shock Layer and Fay-Riddell are made. Results show that the flow for very small radius is in a nearly frozen state, and therefore the heat flux due to diffusion is smaller than that due to translational energy. As the radius becomes larger, the portion of heat flux by diffusion becomes greater than that of heat flux by translational temperature and approaches to a constant value.

Sectional Flow-rate Control of Boom Sprayer According to the Steering Radius along Winding Rows (붐방제기의 곡선행로 조향반경에 따른 붐의 구간별 유량제어)

  • Kim E.S.;Kim Y.J.;Rhee J.Y.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.3 s.116
    • /
    • pp.146-152
    • /
    • 2006
  • Most upland in Korea have irregular field shapes. Boom sprayers working alone winding row will show considerable differences of spraying amount per unit area between left and right booms. If flow rates of both booms are equal. This phenomenon becomes significant as steering radius of sprayer decreases. This study was performed to seek a method which reduce the difference of the spray amount between left, right and center booms while spraying along curvy rows. A flow rate control method for keeping application rate of each boom section constant was proposed and experimentally proved using a boom sprayer attached to a cultivating tractor. The flow rate control device was composed of 3 ball valves and a rotary angle sensor. The rotary angle sensor showed a symmetric voltage output with respect to steering radius. The spray overlapping was happened in a boom nearby the steering center when steering radius of the sprayer was less than 5.2 m. Flow rates for left, right and center booms were regulated using ball valves based on the steering radius and spraying areas ration of right/left boom. The Maximum spraying area ratio ($S_{LR}$) of left to right boom section was 1:3.6 at the steering radius of 5.2 m. However, The Maximum achieved right and left spraying flow ratio was 1:2.7.

RHEOLOGICAL STUDY ON STRAINER STRUCTURE OF UNDER DRAIN PIPES FOR SLOPE PROTECTION

  • Mihara. Machito;Yasutomi, Rokuro;Nakamura, Yoshio
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.197-204
    • /
    • 1993
  • Pipe drainage is one of the effective slope protein works that can be adopted practically. As fine soil particles are suspended in percolating water, the strainer structure of under drain pipes in necessary to prevent the immediate clogging by soil suspension flow. This study deals with the effective strainer structure of under drain pipes for slope protection. The effective strainer structure of under pipes is the funneled strainer in which pore radius is enlarged toward flow direction. It is designed from the rheological properties of soil suspension flow which prevents the immediate clogging. Experimental results showed that the pipe drain discharge through the funneled strainers was larger than that through the constant pore radius strainers. This theorectial and experimental results indicate that the strainer with enlarged pore radius toward flow direction, is more effective than the strainer with constant pore radius.

  • PDF

NUMERICAL ANALYSIS OF FLOW CHARACTERISTIC WITH DIFFERENT CORNER RADIUS OF SQUARE CYLINDER

  • Gao, Zhefeng;Sohn, Chang-Hyun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.315-319
    • /
    • 2010
  • The near wake of square section cylinders with different corner radii is studied by numerical method to investigate the influence of corner radius. Eight models, R/D=0, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5 (R is the corner radius and D is the characteristic dimension of the body) at Re=500 were studied. The numerical results of St, CD and CL at R/D=0 and R/D=0.5 were compared with experiments to prove the feasibility and also investigate the trend of flow phenomena by the various radius corners. Results indicate that, as R/D ratio is increased, the Strouha lnumber is increased, the minimum pressure point on the cylinder surface moved own stream. The calculated results shows that between R/D=0.15 to R/D=0.3 have CD and CL.

  • PDF

A STUDY ON TAYLOR FLOW ACCORDING TO RADIUS RATION AND ANGULAR VELOCITY (반경비 및 각속도의 변화에 따른 Taylor 유동에 관한 연구)

  • Bae, K.Y.;Kim, H.B.;Chung, H.T.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.127-133
    • /
    • 2007
  • This paper represents the numerical study on Taylor flow according to the radius ratio and the angular velocity for flow between tow cylinder. The numerical model is consisted of two cylinder which inner cylinder is rotating and outer cylinder is fix, and the axial direction is used the cyclic condition because of the length for axial direction is assumed infinite. The diameter of inner cylinder is assumed 86.8 mm, the numerical parameters are angular velocity and radius ratio. The numerical method is compared with the experimental results by Wereley, and the results are very good agreement. The critical Taylor number is calculated by theoretical and numerical analysis, and the results is showed the difference about ${\pm}10\;%$. As $Re/Re_c$ is increased, Taylor vortex is changed to wavy vortex, and then the wave number for azimuthal direction is increased. Azimuthal wave according to the radius ratio is showed high amplitude and low frequence in case of small radius ratio, and is showed low amplitude and high frequence in case of large radius ratio.

  • PDF

A Design Procedure for a Multi-Stage Axial Compressor Using the Stage-Stacking Method (단축적방법을 이용한 다단 축류압축기의 설계)

  • 강동진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1598-1603
    • /
    • 1994
  • A preliminary design procedure for a multi-stage axial compressor is developed, which is based on the stage-stacking method. It determines the flow coefficient which gives rise to the design conditions required such as pressure ratio, mass flow rate and rotational speed for a given specific mass flow rate at inlet to a compressor. With this flow coefficient, blade radii, every stage and compressor performance characterics such as stage pressure ratio, adiabatic efficiency etc. are calculated by stacking each stage performance characteristics. It is shown that there is an optimum number of stage which results in the maximum of compressor overall efficiency for a given specific mass flow rate at inlet to a compressor. A test design was tried for three different geometric design constraints, and comparison with a previous study shows that present procedure could be used reliably in determining the number of compressor stage in preliminary design stage.

A Study on the Role of Notch and Radius Reduction Ratio in the Balanced Type Vane Pump (베인 펌프에서 노치와 반경 감소비의 역할에 관한 연구)

  • 김기동;조명래;한동철;최상현;문호지
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.1
    • /
    • pp.87-93
    • /
    • 1998
  • Pressure ripples of hydraulic vane pump results from flow ripples due to pump geometry and reverse flow through the discharge port due to compressibility of fluid and result in vibration and noise of connected hydraulic elements. In a balanced type vane pump, cam ring curve is important factor to influence the flow ripples. Therefore, to reduce the flow ripple, it has been required that optimal selection of seal region by proper design of cam ring and each port position, and notches for preventing the excessive reverse flow. This paper has been performed analytical study of compression characteristics with major design parameter in side plate and cam ring. and examined into the role of notch and radius reduction ratio.

  • PDF