• Title/Summary/Keyword: florisil column

Search Result 90, Processing Time 0.028 seconds

Contemporary Organic Contamination Levels in Digested Sewage Sludge from Treatment Plants in Korea : (3) Organophosphorus Insecticides (우리나라 하수 및 폐수 처리 슬러지의 유기인계 살충제의 함량)

  • Hong Gi-Hoon;Lee Kang-Young;Chung Chang-Soo;Lee Hyun-Kyung
    • Journal of Environmental Science International
    • /
    • v.15 no.3
    • /
    • pp.229-236
    • /
    • 2006
  • Organophosphorus pesticides (OPPs) contents in the sewage sludge derived from the residential and industrial areas were determined in order to characterize contemporary organic contamination levels as a part of the ongoing development of the environmentally sound sewage sludge management strategy in Korea. OPPs were extracted from freeze-dried sludges in a ultrasonic extractor. The extracts were cleaned-up by florisil column and subsequently fed into gas chromatograph/nitrogen phosphorus detector (GC/NPD) for determining OPP contents. Diazinon, dimethoate, disulfoton, EPN, malathion, methyl parathion, parathion, phorate and sulfotep were present in the appreciable amount in the domestic sewage sludges. The sum of the 9 OPPs in the sewage sludge varied from 534.8 to 15552.1 ${\mu}g/kg$, dry wt..

Simultaneous Analysis of Multi-residual pesticides using GC/NPD (GC/NPD를 이용한 다성분 잔류농약의 동시분석)

  • 김우성;이선화;김상엽;정동윤;김재이;이영자;이홍재;정성욱;박흥재
    • Journal of Environmental Science International
    • /
    • v.12 no.10
    • /
    • pp.1117-1120
    • /
    • 2003
  • Pesticides were extracted from samples with 70% acetone and methylene chloride in order, and then cleaned up via open-column chromatography apparatus packed with florisil, and finally analyzed simultaneously the organophosphorus pesticides using GC/NPD. Ultra-2 and Ultra-1 fused silica capillary columns were used to separate and identify the products. Recovery of most analytes from soybean sample, taken from pesticide residues well, was greater than(80%) for all except(6) analytes. This method can simultaneously determine multiple pesticides with a high degree of accuracy and precision.

Detection of Radiation-induced Hydrocarbons and 2-Alkylcyclobutanones from Peanuts

  • Lee, Hae-Jung;Lee, Myung-Yul;Kim, Kyung-Su
    • Preventive Nutrition and Food Science
    • /
    • v.4 no.4
    • /
    • pp.270-275
    • /
    • 1999
  • Radiation-induced hydrocarbons and 2-alkylcyclobutanones are formed from the fatty acids of irradiated fats. Peanuts were irradiated with a dose of 0.1∼10 kGy. The method consists of the extraction of fat from peanuts, separation of hydrocarbons and 2-alkylcyclobutanones with florisil column chromatography and identification of hydrocarbons by the GC/MS method and 2-alkylcyclobutanones by GC/MS/selected ion monitoring (SIM). Concentrations of hydrocarbons and 2-alkylcyclobutanones were linearly increased with the dose levels of radiation. The major hydrocarbons in the irradiated peanut samples were 8-heptadecene and 1,7-hexadecadiene from oleic acid and 6,9-heptadecadiene and 1,7,10-hexadecatriene from linoleic acid. 2-(5'-Tetradecenyl)cyclobutanone, one of 2-alkylcyclobutanones, was the highest amount in the irradiated peanuts. Radiation-induced hydrocarbons in the peanuts were detected at doses of 0.5 kGy and over, and radation-induced 2-alkylcyclobutanones were detected at doses of 1 kGy and over. These compounds were not confirmed in unirradiate peanuts.

  • PDF

Application of Hydrocarbons as Markers for Detecting Post-irradiation of Imported Meats and Fish (수입육류 및 어류의 방사선조사 여부 판별을 위한 Marker로 검출되는 Hydrocarbons의 활용)

  • 황금택;박준영;김충기
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.6
    • /
    • pp.1109-1115
    • /
    • 1997
  • Hydrocarbons were analyzed in irradiated beef, pork, dried and seasoned beef, dried anchovy, dried squid, dried shrimp, and fish paste to determine whether the hydrocarbons can be used as markers for detecting post-irradiation of the imported meat and fish products. The samples were irradiated at 0.5, 1, 3, and 6 kGy. Fat was extracted with hexane, and hydrocarbons were separated from the fat through Florisil column. The hydrocarbons were analyzed with GC. Hydrocarbons 15:0, 16:1, 17:1, 16:2, 17:2, and 16:3 in beef and pork, 17:1, 16:2, and 17:2 in dried and seasoned beef, 16:2 in dried anchovy, 16:1 and 17:1 in dried squid, 16:1, 17:1, and 16:2 in dried shrimp, and 16:1, 16:2, and 16:3 in fish paste were detected in the irradiated samples, but not in the unirradiated, so that the hydrocarbons may be used as makers for detecting post-irradiation of each item.

  • PDF

Determination of Quintozene Residues in Agricultural Commodities Using GC-ECD/MS (GC-ECD/MS를 이용한 농산물 중 Quintozene의 잔류분석)

  • Ahn, Kyung-Geun;Kim, Gyeong-Ha;Kim, Gi-Ppeum;Hwang, Young-Sun;Hong, Seung-Beom;Lee, Young Deuk;Choung, Myoung-Gun
    • The Korean Journal of Pesticide Science
    • /
    • v.19 no.3
    • /
    • pp.195-203
    • /
    • 2015
  • Quintozene, pentachloronitrobenzene (PCNB) is a contact fungicide for control of soilborne phytopathogenic fungi during cultivation of diverse crops. It was introduced to agricultural use around 1930's as a substitute for mercurial disinfectants. Although quintozene had been first registered in Korea on 1969. However, now it was banned to use due to its high residue levels in selected harvest products. Also, high possibility is expected that the residue may be contained in imported agricultural commodities as it is still used widely over the world. Therefore, this study was conducted to establish a determination method for quintozene residue in crops using GC/ECD/MS. Quintozene residue was extracted with acetonitrile from representative samples of five raw products which comprised hulled rice, soybean, Kimchi cabbage, green pepper, and apple. The extract was diluted with saline water, and n-hexane partition was followed to recover quintozene from the aqueous phase. Florisil column chromatography was additionally employed for final clean up of the extract. The quintozene was quantitated by GLC with ECD, using a DB-1 capillary column. The crops were fortified with quintozene at 3 levels per crop. Mean recoveries ranged from 79.9% to 102.7% in five representative agricultural commodities. The coefficients of variation were less than 4.3%. Quantitative limit of quintozene was 0.004 mg/kg in representative five crop samples. A GC/MS with selected-ion monitoring was also provided to confirm the suspected residue. Therefore, this analytical method was reproducible and sensitive enough to determine the residue of quintozene in agricultural commodities.

GC/MS analysis of hydrocarbons and 2-alkylcyclobutanones from γ-ray irradiated walnut (Juglans nigra) (호두(Juglans nigra)의 감마선 조사에 따른 hydrocarbon류와 2-alkylcyclobutanone류의 GC/MS 분석)

  • Nho, Eun Yeong;Choi, Ji Yeon;Kim, Kyong Su
    • Food Science and Preservation
    • /
    • v.21 no.6
    • /
    • pp.859-865
    • /
    • 2014
  • This study was conducted to analyze the hydrocarbons and 2-alkylcyclobutanones as marker compounds in walnuts after the walnuts' exposure to ${\gamma}$ irradiation. The samples were irradiated with gamma rays at 0, 1, 3, 5, 7, and 10 kGy doses. The lipids were extracted via soxhlet extraction using hexane, and were separated by florisil column and identified via gas chromatography / mass spectrometry (GC/MS). The hydrocarbons that were detected were 8-heptadecene ($C_{17:1}$) and 1,7-hexadecadiene ($C_{16:2}$) from oleic acid and 8,11-heptadecadiene ($C_{17:2}$) and 1,7,10-hexadecatriene ($C_{16:3}$) from linoleic acid. The 2-alkylcyclobutanones that were detected were 2-dodecylcyclobutanone (DCB) from palmitic acid, 2-tetradecylcyclobutanone (TCB) from stearic acid, 2-(5'-tetradecenyl)cyclobutanone (TECB) from oleic acid, and 2-(5',8'-tetradecadienyl)cyclobutanone (5',8'-TCB) from linoleic acid. The correlation between the irradiation dose and the concentrations of the hydrocarbons and 2-alkylcyclobutanones in the walnuts was found to be linear. The radio-induced hydrocarbons and 2-alkylcyclobutanones were clearly detected in the irradiated walnuts at 1 kGy and above, but not in the non-irradiated ones. The major hydrocarbons obtained after irradiation were 8-heptadecene from oleic acid and 8,11-heptadecadiene and 1,7,10-hexadecatriene from linoleic acid, and the major 2-alkylcyclobutanones were TECB from oleic acid and 5',8'-TCB from linoleic acid. Therefore, these major compounds were concluded to be the marker compounds for determining the irradiated and non-irradiated samples.

Residue Determination of Chlorothalonil in Sesame and Soil (Chlorothalonil의 참깨 및 토양중 잔류소장에 관한 연구)

  • Lee, Kang-Bong;Cho, Ill-Kyu;Shim, Jae-Han;Suh, Yong-Tack
    • Korean Journal of Environmental Agriculture
    • /
    • v.9 no.1
    • /
    • pp.15-22
    • /
    • 1990
  • The efects of application time on the persistence of chlorothalonil in sesame plants and its persistence in soil were studied in the field. A procedure was used which permited the analysis of residues of Chlorothalonil (DACONIL 2787) in sesame(Sesamum indicum L.)and soil. The procedure was based on the multiresidue analytical method using an polarized acetonitrile solution or acidified acetone as the extracting solvent. The DACONIL 2787 is separated from the fat in the extracts by using an activated alumina and Florisil chromatogaphic column. Residues of DACONIL 2787 were determined by subjecting the alternate eluate from the Florisil column to gas chromatographic analysis(ECD). Residue of chlorothalonil in sesame are proved to 0.06 ppm for six sprays, 3rd day before harvest The half-life of chlorothalonil in soil proved to be 8.9 days and residues of chlorothalonil was only 0.03 ppm 100 days after application of 15 ppm.

  • PDF

Determination of Amisulbrom Residues in Agricultural Commodities Using HPLC-UVD/MS (HPLC-UVD/MS를 이용한 농산물 중 Amisulbrom의 잔류분석)

  • Ahn, Kyung-Geun;Kim, Gyeong-Ha;Kim, Gi-Ppeum;Kim, Min-Ji;Hwang, Young-Sun;Hong, Seung-Beom;Lee, Young Deuk;Choung, Myoung-Gun
    • The Korean Journal of Pesticide Science
    • /
    • v.18 no.4
    • /
    • pp.321-329
    • /
    • 2014
  • This experiment was conducted to establish an analytical method for residues of amisulbrom, as recently developed an oomycete-specific fungicide showing inhibition of fungal respiration, in crops using HPLC-UVD/MS. Amisulbrom residue was extracted with acetonitrile from representative samples of five raw products which comprised apple, green pepper, kimchi cabbage, potato and hulled rice. The extract was diluted with 50 mL of saline water and directly partitioned into dichloromethane to remove polar co-extractives in the aqueous phase. For the hulled rice sample, n-hexane/acetonitrile partition was additionally employed to remove non-polar lipids. The extract was finally purified by optimized Florisil column chromatography. On an octadecylsilyl column in HPLC, amisulbrom was successfully separated from sample co-extractives and sensitively quantitated by ultraviolet absorption at 255 nm with no interference. Accuracy and precision of the proposed method was validated by the recovery test on every crop samples fortified with amisulbrom at 3 concentration levels per crop in each triplication. Mean recoveries ranged from 85.3% to 105.6% in five representative agricultural commodities. The coefficients of variation were all less than 10%, irrespective of sample types and fortification levels. Limit of quantitation (LOQ) of amisulbrom was 0.04 mg/kg as verified by the recovery experiment. A confirmatory method using LC/MS with selected-ion monitoring technique was also provided to clearly identify the suspected residue. The proposed method was sensitive, reproducible and easy-to-operate enough to routinely determine the residue of amisulbrom in agricultural commodities.

Analytical Method of Bentazone Residue in Agricultural Commodities Using HPLC-UVD/MS (HPLC-UVD/MS를 이용한 농산물 중 bentazone의 분석법 확립)

  • Kim, Young-Hak;Lee, Su-Jin;Song, Lee-Seul;Hwang, Young-Sun;Lee, Young-Deuk;Choung, Myoung-Gun
    • The Korean Journal of Pesticide Science
    • /
    • v.15 no.2
    • /
    • pp.149-159
    • /
    • 2011
  • Bentazone is benzothiadiazole group herbicide, and used to foliage treatment. This herbicide have already been widely used for cereals and vegetables planting in worldwide. This experiment was conducted to establish a determination method for bentazone residue in crops using HPLC-UVD/MS. Bentazone residue was extracted with acetone (adjusted pH 1 with phosphoric acid) from representative samples of five raw products which comprised hulled rice, soybean, apple, green pepper, and Chinese cabbage. The extract was diluted with saline water, and dichloromethane partition was followed to recover bentazone from the aqueous phase. Florisil column chromatography was additionally employed for final clean up of the extract. The bentazone was quantitated by HPLC with UVD, using a YMC ODS AM 303 ($4.6{\times}250$ mm) column. The crops were fortified with bentazone at 3 levels per crop. Mean recovery ratio were ranged from 82.0% for a 0.2 mg/kg in apple to 97.9% for a 0.02 mg/kg in Chinese cabbage. The coefficients of variation were ranged from 0.5% for a 0.02 mg/kg in soybean to 9.7% for a 0.02 mg/kg in Chinese cabbage. Quantitative limit of bentazone was 0.02 mg/kg in representative five crop samples. A LC/MS with selected-ion monitoring was also provided to confirm the suspected residue. Therefore, this analytical method was reproducible and sensitive enough to determine the residue of bentazone in agricultural commodities.

Determination of Ametryn Residue in Agricultural Commodities Using HPLC-UVD/MS (HPLC-UVD/MS를 이용한 농산물 중 ametryn의 분석)

  • Lee, Su-Jin;Kim, Young-Hak;Song, Lee-Seul;Choung, Myoung-Gun
    • The Korean Journal of Pesticide Science
    • /
    • v.15 no.2
    • /
    • pp.125-133
    • /
    • 2011
  • Ametryn is used in USA, China, and Japan, but not introduced in Korea yet. So, MRL (Maximum Residue Level), and analytical method of ametryn were not establishment in Korea. Therefore, this experiment was conducted to establish a determination method for ametryn residue in crops using HPLC-UVD/MS. Ametryn residue was extracted with acetone from representative samples of five raw products which comprised hulled rice, soybean, apple, green pepper, and Chinese cabbage. The extract was diluted with saline water, and dichloromethane partition was followed to recover ametryn from the aqueous phase. Florisil column chromatography was additionally employed for final clean up of the extract. The ametryn was quantitated by HPLC with UVD, using a Tosoh ODS 120T ($4.6{\times}250$ mm) column. The crops were fortified with ametryn at 2 levels per crop. Mean recovery ratio were ranged from 83.7% for a 0.2 mg/kg in soybean to 91.1% for a 1.0 mg/kg in hulled rice. The coefficients of variation were ranged from 1.2% for a 1.0 mg/kg in hulled rice to 3.6% for a 1.0 mg/kg in soybean. Quantitative limit of amatryn was 0.02 mg/kg in representative 5 crop samples. A LC/MS with selected-ion monitoring was also provided to confirm the suspected residue. Therefore, this analytical method was reproducible and sensitive enough to determine the residue of ametryne in agricultural commodities.