• Title/Summary/Keyword: flood forecasting model

Search Result 218, Processing Time 0.027 seconds

Real-Time Forecasting of Flood Discharges Upstream and Downstream of a Multipurpose Dam Using Grey Models (Grey 모형을 이용한 다목적댐의 유입 홍수량과 하류 하천 홍수량 실시간 예측)

  • Kang, Min-Goo;Cai, Ximing;Koh, Deuk-Koo
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.1
    • /
    • pp.61-73
    • /
    • 2009
  • To efficiently carry out the flood management of a multipurpose dam, two flood forecasting models are developed, each of which has the capabilities of forecasting upstream inflows and flood discharges downstream of a dam, respectively. The models are calibrated, validated, and evaluated by comparison of the observed and the runoff forecasts upstream and downstream of Namgang Dam. The upstream inflow forecasting model is based on the Grey system theory and employs the sixth order differential equation. By comparing the inflows forecasted by the models calibrated using different data sets with the observed in validation, the most appropriate model is determined. To forecast flood discharges downstream of a dam, a Grey model is integrated with a modified Muskingum flow routing model. A comparison of the observed and the forecasted values in validation reveals that the model can provide good forecasts for the dam's flood management. The applications of the two models to forecasting floods in real situations show that they provide reasonable results. In addition, it is revealed that to enhance the prediction accuracy, the models are necessary to be calibrated and applied considering runoff stages; the rising, peak, and falling stages.

The Optimal Hydrologic Forecasting System for Abnormal Storm due to Climate Change in the River Basin (하천유역에서 기후변화에 따른 이상호우시의 최적 수문예측시스템)

  • Kim, Seong-Won;Kim, Hyeong-Su
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.2193-2196
    • /
    • 2008
  • In this study, the new methodology such as support vector machines neural networks model (SVM-NNM) using the statistical learning theory is introduced to forecast flood stage in Nakdong river, Republic of Korea. The SVM-NNM in hydrologic time series forecasting is relatively new, and it is more problematic in comparison with classification. And, the multilayer perceptron neural networks model (MLP-NNM) is introduced as the reference neural networks model to compare the performance of SVM-NNM. And, for the performances of the neural networks models, they are composed of training, cross validation, and testing data, respectively. From this research, we evaluate the impact of the SVM-NNM and the MLP-NNM for the forecasting of the hydrologic time series in Nakdong river. Furthermore, we can suggest the new methodology to forecast the flood stage and construct the optimal forecasting system in Nakdong river, Republic of Korea.

  • PDF

Comparison of the Rainfall-Runoff Models for Flood Forecasting in Watershed (하천 수계의 홍수 예측을 위한 강우-유출 모형의 비교)

  • 심순보;박노혁
    • Water for future
    • /
    • v.29 no.6
    • /
    • pp.237-247
    • /
    • 1996
  • In this study two rainfall-runoff models, the NWS-PC model and the Storage Function Model (SFM), were compared to see their applicability in the flood forecasting at the river system. The SFM has been adopted in the flood-forecasting and warning system for the major rivers in Korea since 1974, and the NWS-PC model, a physically based model, has been developed to simulate soil moisture changing as well as the surface and subsurface flow at the watershed and in the river streams. Case studies were carried out using flood event data observed at the Mihochun watershed in Geum-river basin during 1985 to 1995. Simulated results from both models were compared with the observed data with respect to the RMS errors and relative errors for peak flow discharges and total runoff volumes to show the advantages and disadvantages of both models and to suggest the way to improve their performances.

  • PDF

A Feasibility Study of TOPMODEL for a Flood Forecasting Model on a Single Watershed (TOPMODEL의 단일유역 홍수예보능에 관한 연구)

  • Bae, Deok-Hyo;Kim, Jin-Hun;Gwon, Won-Tae
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.1
    • /
    • pp.87-98
    • /
    • 2000
  • The objective of this study is to test the flood forecasting capability of TOPMODEL on a single watershed in Korea. The selected study area is the Soyang River basin with outlet at Soyang Dam site. The three daily hydrographs and the three hourly flood events during 1990~1996 are selected for model calibrations and performance tests. The model parameters are estimated on 1990 daily event by manual fitting technique and the effects of topographic index distribution to river flow simulations are investigated on the study area. The model performance on correlation coefficient between the observed and the simulated flows for the verification periods are above 0.77 on the 95-, 96-daily events, while above 0.87 for 90-, 95-, 96-hourly events. By the consideration of flood flow characteristics in Korea, the physical interpretation of the model concept, and the model performance, it can be concluded that the TOPMODEL is feasible as a flood forecasting model in Korea. Korea.

  • PDF

Improvement for Reservoir Operation Module of Flood Forecasting-Warning Systems in Han River (한강 홍수예경보시스템의 저수지 운영모듈 개선)

  • Kwon, Oh-Ig;Kim, Sung;Shim, Myung-Pil
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.6
    • /
    • pp.685-695
    • /
    • 1999
  • On the premise of flood control procedure, flood forecasting-warning, system(FFWS) is one of actions for disaster prevention. It makes public announcements for flood situations timely in order to mitigate damage from floodings. Multi-purpose dam which has flood control storage plays an important role in river basin at flood time. In FFWS, it is reservoir operation module that is related to reservoir operation of multi-purpose dam. This study considers the current conditions and problems in reservoir operation module of FFWS in Han River and improves reservoir operation module under limited research scope. As results, additional reservoir operation modules such as Technical ROM(Reservoir Operation Method) and ARD(Approved Release Discharge) ROM were built in FFWS. Using these newly built reservoir operation modules. Han River Flood Control Office will plan and work for flood control and flood forecasting. Firstly, it may plan for flood control by Technical ROM which is deterministic simulation model, and work for final flood control and flood forecasting by ARD ROM according to approved release discharge afterward.

  • PDF

Parameter Calibration of Storage Function Model and Flood Forecasting (1) Calibration Methods and Evaluation of Simulated Flood Hydrograph (저류함수모형의 매개변수 보정과 홍수예측 (1) 보정 방법론과 모의 홍수수문곡선의 평가)

  • Song, Jae Hyun;Kim, Hung Soo;Hong, Il Pyo;Kim, Sang Ug
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1B
    • /
    • pp.27-38
    • /
    • 2006
  • The storage function model (SFM) has been used for the flood forecasting in Korea. The SFM has a simple calculation process and it is known that the model is more reasonable than linear model because it considers non-linearity of flood runoff. However, the determination of parameters is very difficult. In general, the trial and error method which is an manual calibration by the decision of a model manager. This study calibrated the parameters by the trial and error method and optimization technique. The calibrated parameters were compared with the representative parameters which are used in the Flood Control Centers in Korea. Also, the evaluation indexes on objective functions and calibration methods for the comparative analysis of simulation efficiency. As a result, the Genetic Algorithm showed the smallest variation in objective functions and, in this study, it is known that the objective function of SSR (Sum of Squared of Residual) is the best one for the flood forecasting.

Flood Analysis in the Tidal Reaches of the Nakdong River (낙동강 하류부의 감조구간에 대한 홍수해석)

  • Lee, Joo-Heon;Lee, Eun-Tae;Lee, Do-Hun;Kim, Nam Won
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.3
    • /
    • pp.235-242
    • /
    • 1998
  • The objective of this study is to develope a predictive model for flood forecasting in the tidal reaches of the Nakdong river and to analyze the tidal effects of major flood forecasting station of the Nakdong river by using the hydraulic flood routing. In the calibration process the optimum roughness coefficients as functions of channel reach and discharge were determined and the calibration results suggest that the unsteady hydraulic flood routing model simulated with the optimum roughness coefficients showed close agreement between the calculated and observed stage.

  • PDF

Flood Forecasting for Pre-Release of Taech'ong Reservoir (대청댐 예비 방류를 위한 홍수 예보)

  • Lee, Jae-Hyeong;Sim, Myeong-Pil;Jeon, Il-Gwon
    • Water for future
    • /
    • v.26 no.2
    • /
    • pp.99-105
    • /
    • 1993
  • A practical flood forecasting model(FFM) is suggested. The output of the model is the results which the initial condition of meteorological parameters and soil moisture are projected on the future. The physically based station model for rainfall forecasting(RF) and the storage function model for runoff prediction(RP) are adopted respectively. Input variables for FFM are air temperature, pressure, and dew-point temperature at the ground level and the flow at the rising limb(FRL). The constant parameters for FFM are average of optimum values which the past storm events have. Also loss rate of rainfall can predicted by FRL.

  • PDF

Real Time Flood Forecasting Using Artificial Neural Networks (인공신경망 이론을 이용한 실시간 홍수량 예측 및 해석)

  • Kang, Moon-Seong;Park, Seung-Woo
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.277-280
    • /
    • 2002
  • An artificial neural network model was developed to analyze and forecast real time river runoff from the Naju watershed, in Korea. Model forecasts are very accurate (i.e., relative error is less than 3% and $R^2$ is great than 0.99) for calibration data sets. Increasing the time horizon for validation data sets, thus making the model suitable for flood forecasting, decreases the accuracy of the model. The resulting optimal EBPN models for forecasting real time runoff consists of ten rainfall and four and ten runoff data (ANN0410 and ANN1010 models). Performances of the ANN0410 and ANN1010 models remain satisfactory up to 6 hours (i.e., $R^2$ is great than 0.92).

  • PDF

A Forecasting Model for the Flood Peak Stage and Flood Travel Time by Hydraulic Flood Routing

  • Yoon, Yong-Nam;Park, Moo-Jong
    • Korean Journal of Hydrosciences
    • /
    • v.4
    • /
    • pp.11-19
    • /
    • 1993
  • The peak flood discharge at a downstream station and the flood travel time between a pair of dams due to a specific flood release from the upper reservoir are computed using a hydraulic river channel routing method. The study covered the whole large reservoir system in the Han River, Korea. The computed flood discharges and the travel times between dams were correlated with the duration and the magnitude of flood release rate at the upstream reservoir, and hence a multiple regression model is proposed for each river reach between a pair of dams. The peak flood discharge at a downstream location can be converted to the peak flood stage by a rating curve. Hence, the proposed regression model could be used to forecast the peak flood stage at a downstream location and the flood travel time between dams using the information on the flood travel time, release rate and duration from the upper dam.

  • PDF