• Title/Summary/Keyword: flood damage analysis

Search Result 383, Processing Time 0.02 seconds

An analysis of storage and runoff reduction characteristics using planter box in architectural LID system (건축형 LID 시스템에서 Planter Box를 활용한 저류 및 유출저감 특성 분석)

  • Kim, Byung Sung;Kim, Jae Moon;Baek, Jong Seok;Shin, Hyun Suk
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.3
    • /
    • pp.219-226
    • /
    • 2019
  • Recently, research about Low-Impact Development (LID) techniques has been expanded due to problems with the effects of climate change and urbanization that have been increasing. LID technology is used to control flood damage environmentally to reduce runoff and is reduce runoff on city also restore into previous water circulation system from present developed city. However, studies about quantitative data of LID techniques are insufficient. Therefore in this study, the Curve Number (CN) was calculated with the Planter Box, which is storage type LID technology to conduct the water circulation (infiltration, runoff, overflow) analysis. Rainfall intensity scenario (60.4 mm/hr, 83.1 mm/hr, 97.4 mm/hr, 108.2 mm/hr) about water circulation analysis of Planter Box is selected on the basis of probable rainfall intensity table. According to the experimental results, the storage rate of rainwater in Building Planter Box and Street Planter Box was 43.5% to 52.9% and 33.4% to 39%, respectively. In addition, CN value is estimated to 83 at the Planter box and the runoff reduction effect by applying Horton's infiltration capacity curve showed on 51% to 98%.

Spatial analysis of water shortage areas considering spatial clustering characteristics in the Han River basin (공간군집특성을 고려한 한강 유역 물부족 지역 분석)

  • Lee, Dong Jin;Son, Ho-Jun;Yoo, Jiyoung;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.5
    • /
    • pp.325-336
    • /
    • 2023
  • In August 2022, even though flood damage occurred in the metropolitan area due to heavy rain, drought warnings were issued in Jeolla province, which indicates that the regional drought is intensified recent years. To cope with regarding intensified regional droughts, many studies have been conducted to identify spatial patterns of the occurrence of meteorological drought, however, case studies of spatial clustering for water shortage are not sufficient. In this study, using the estimations of water shortage in the Han River Basin in 2030 of the Master Plans for National Water Management, the spatial characteristics of water shortage were analyzed to identify the hotspot areas based on the Local Moran's I and Getis-Ord Gi*, which are representative indicators of spatial clustering analysis. The spatial characteristics of water shortage areas were verified based on the p-value and the Moran scatter plot. The overall results of for three anayisis periods (S0(1967-1983), S1(1984-2000), S2(2001-2018)) indicated that the lower Imjin River (#1023) was the hotspot for water shortage, and there are moving patterns of water shortage from the east of lower Imjin River (#1023) to the west during S2 compared to S0 and S1. In addition, the Yangyang-namdaecheon (#1301) was the HL area that is adjacent to a high water shortage area and a low water shortage area, and had water shortage pattern in S2 compared to S0 and S1.

A Study on the Analysis of Information Element of COP-Based Situation Panel for Efficient Disaster Management in the Situation Room (상황실의 효율적인 재난관리를 위한 COP기반 상황판 정보요소 분석에 관한 연구: 풍수해를 중심으로)

  • Cho, Jung-Yun;Song, Ju-Il;Jang, Cho-Rok;Jang, Moon-Yup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.393-401
    • /
    • 2021
  • This study derives essential information elements that should be shared in the situation board by utilizing the concept of common operating picture (COP). The COP's concept and actual overseas cases were confirmed, and COP information elements that should be considered for disaster situations were redefined. The COP disaster response information elements were derived by analyzing the standard manual for disaster response and daily situation reports issued in Korea. The information elements were divided into four stages (①Report reception and recognition stages, ②Situation propagation and reporting stages, ③Emergency equipment operation stages, ④Recovery and recovery stages), centered on storm and flood damage. Further analysis of the detailed information elements was conducted to derive the information elements that must be shared in the context board. The information is shared along with spatial and geographical characteristics due to the characteristics of the COP, providing complex information to decisionmakers and officials, enabling diverse access to disaster situations. Furthermore, it is expected that disaster response will be more efficient by sharing the information in common.

An Analysis on Climate Change and Military Response Strategies (기후변화와 군 대응전략에 관한 연구)

  • Park Chan-Young;Kim Chang-Jun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.2
    • /
    • pp.171-179
    • /
    • 2023
  • Due to man-made climate change, global abnormal weather phenomena have occurred, increasing disasters. Major developed countries(military) are preparing for disasters caused by extreme weather appearances. However, currently, disaster prevention plans and facilities have been implemented based on the frequency and intensity method based on statistical data, it is not enough to prepare for disasters caused by frequent extreme weather based on probability basis. The U.S. and British forces have been the fastest to take research and policy approaches related to climate change and the threat of disaster change, and are considering both climate change mitigation and adaptation. The South Korean military regards the perception of disasters to be storm and flood damage, and there is a lack of discussion on extreme weather and disasters due to climate change. In this study, the process of establishing disaster management systems in developed countries(the United States and the United Kingdom) was examined, and the response policies of each country(military) were analyzed using literature analysis techniques. In order to maintain tight security, our military should establish a response policy focusing on sustainability and resilience, and the following three policy approaches are needed. First, it is necessary to analyze the future operational environment of the Korean Peninsula in preparation for the environment that will change due to climate change. Second, it is necessary to discuss climate change 'adaptation policy' for sustainability. Third, it is necessary to prepare for future disasters that may occur due to climate change.

Analysis of Tsunami Characteristics of Korea Southern Coast Using a Hypothetical Scenario (가상시나리오에 따른 남해안 지진해일 특성 연구)

  • Bumshick Shin;Dong-Seog Kim;Dong-Hwan Kim;Sang-Yeop Lee;Si-Bum Jo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.36 no.2
    • /
    • pp.80-86
    • /
    • 2024
  • Large-scale earthquakes are occurring globally, especially in the South Asian crust, which is experiencing a state of tension in the aftermath of the 2011 East Japan Earthquake. Uncertainty and fear regarding the possibility of further seismic activity in the near future have been on the rise in the region. The National Disaster Management Research Institute has previously studied and analyzed the overflow characteristics of a tsunami and the rate of flood forecasting through tsunami numerical simulations of the East Sea of South Korea. However, there is currently a significant lack of research on the Southern Coast tsunamis compared to the East Coast. On the Southern Coast, the tidal difference is between 1~4 m, and the impact of the tides is hard to ignore. Therefore, it is necessary to analyze the impact of the tide propagation characteristics on the tsunami. Occurrence regions that may cradle tsunamis that affect the southern coast region are the Ryukyu Island and Nankai Trough, which are active seafloor fault zones. The Southern Coast has not experienced direct damage from tsunamis before, but since the possibility is always present, further research is required to prepare precautionary measures in the face of a potential event. Therefore, this study numerically simulated a hypothetical tsunami scenario that could impact the southern coast of South Korea. In addition, the tidal wave propagation characteristics that emerge at the shore due to tide and tsunami interactions will be analyzed. This study will be used to prepare for tsunamis that might occur on the southern coast through tsunami hazard and risk analysis.

A Study on Typhoon Impacts in the Nakdong River Basin Associated with Decaying Phases of Central-Pacific El Niño (중앙태평양 엘니뇨의 쇠퇴특성에 따른 낙동강 유역의 태풍영향 분석)

  • Kim, Jong-Suk;Son, Chan-Young;Lee, Joo-Heon;Moon, Young-Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.135-143
    • /
    • 2014
  • This study classified abnormal sea surface temperature changes of the central pacific region according to three evolution patterns. Focusing on typhoons that affect the Korean Peninsula, the research analyzed typhoon's occurrence spot and track, change in the central pressure characteristics, and the characteristics of change in typhoon precipitation and the number of occurrences of heavy rainfall in the Nakdong River Basin. As a result of analysis, in case of prolonged-decaying years and symmetric-decaying years, typhoon-related summer rainfall and heavy rainy days appeared to be higher than long-term average. But in case of abrupt-decaying years, the pattern of general decrease appeared. This is because typhoon's occurrence spot is located comparatively near the Korean peninsula, typhoon's central pressure is high, and typhoon's route generally moves to Japan. As the outcome, this study is expected to reduce flood damage through analyzing the characteristics of typhoon's activity according to CP El Ni$\tilde{n}$o evolution patterns and the characteristics of local typhoon rainfall. In addition, it is expected to provide useful information for establishing adaptation and mitigation to climate change.

Analysis of the effect of climate change on IDF curves using scale-invariance technique: focus on RCP 8.5 (Scale-Invariance 기법을 이용한 IDF 곡선의 기후변화 영향 분석: RCP 8.5를 중심으로)

  • Choi, Jeonghyeon;Lee, Okjeong;Kim, Sangdan
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.12
    • /
    • pp.995-1006
    • /
    • 2016
  • According to 5th IPCC Climate Change Report, there is a very high likelihood that the frequency and intensity of extreme rainfall events will increase. In reality, flood damage has increased, and it is necessary to estimate the future probabilistic design rainfall amount that climate change is reflected. In this study, the future probabilistic design precipitation amount is estimated by analyzing trends of future annual maximum daily rainfall derived by RCP 8.5 scenarios and using the scale-invariance technique. In the first step, after reviewing the time-scale characteristics of annual maximum rainfall amounts for each duration observed from 60 sites operating in Korea Meterological Administration, the feasibility of the scale-invariance technique are examined using annual daily maximum rainfall time series simulated under the present climate condition. Then future probabilistic design rainfall amounts for several durations reflecting the effects of climate change are estimated by applying future annual maximum daily rainfall time series in the IDF curve equation derived by scale-invariance properties. It is shown that the increasing trend on the probabilistic design rainfall amount has resulted on most sites, but the decreasing trend in some regions has been projected.

Analysis of Non-Point Source Pollution Discharge Characteristics in Leisure Facilities Areas for Pattern Classification (패턴분류를 위한 위락시설지역의 비점오염원 유출특성분석)

  • Kim, Yong-Gu;Jin, Young-Hoon;Park, Sung-Chun;Kim, Jung-Min
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.12
    • /
    • pp.1029-1038
    • /
    • 2010
  • In meteorology Korea has 2/3 of rain of annual total rainfall at the month of Jun through Sept and it has possibility to have serious flood damage because geographically it is composed of mountainous area with steep slope which account for 70% of its country. Also, the increase of impervious layer due to industrialization and urbanization causes direct runoff, which deteriorates contamination of rivers by moving the contaminated material on the surface at the beginning of rain. In particular, the area of leisure facilities needs the management of water quality absolutely because dense population requires space of park function and place to relax and increases moving capability of non-point pollution source. For disposition of rainfall & runoff, the standard of initial rainfall, which is to be used for the computation of disposition volume, is significant factors for the runoff study of non-point pollution source, Until now, a great deal of study has been done by many researchers. However, it is the current reality that the characteristics of runoff varies according to land protection comprising river basin and the standard of initial rainfall by each researcher is not clearly defined yet. Therefore, in this research, it is suggested that, with the introduction of SOM (Self-Organizing Map), the standard of initial rainfall be determined after analyzing each sectional data by executing pattern classification about runoff and water quality data measured at the test river basin for this research.

A Study on Prediction of Inundation Area considering Road Network in Urban Area (도시지역 도로 네트워크를 활용한 침수지역 예측에 관한 연구)

  • Son, Ah Long;Kim, Byunghyun;Han, Kun Yeon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.2
    • /
    • pp.307-318
    • /
    • 2015
  • In this study, the efficiency of two-dimensional inundation analysis using road network was demonstrated in order to reduce the simulation time of numerical model in urban area. For this objective, three simulation conditions were set up: Case 1 considered only inundation within road zone, while Case 2 and 3 considered inundation within road and building zone together. Accordingly, Case 1 used grids generated based on road network, while Case 2 and 3 used uniform and non-uniform grids for whole study area, respectively. Three simulation conditions were applied to Samsung drainage where flood damage occurred due to storm event on Sep. 21, 2010. The efficiency of suggested method in this study was verified by comparison the accuracy and simulation time of Case 1 and those of Case 2 and 3. The results presented that the simulation time was fast in the order of Case 1, 2 and 3, and the fit of inundation area between each case was more than 85% within road zone. Additionally, inundation area of building zone estimated from inundation rating index gave a similar agreement under each case. As a result, it is helpful for study on real-time inundation forecast warning to use a proposed method based on road network and inundation rating index for building zone.

Study on Runoff Variation by Spatial Resolution of Input GIS Data by using Distributed Rainfall-Runoff Model (분포형 강우-유출 모형의 입력자료 해상도에 따른 유출변동 연구)

  • Jung, Chung Gil;Moon, Jang Won;Lee, Dong Ryul
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.9
    • /
    • pp.767-776
    • /
    • 2014
  • Changes in climate have largely increased concentrated heavy rainfall, which in turn is causing enormous damages to humans and properties. Floods are one of the most deadly and damaging natural disasters known to mankind. The flood forecasting and warning system concentrates on reducing injuries, deaths, and property damage caused by floods. Therefore, the exact relationship and the spatial variability analysis of hydrometeorological elements and characteristic factors is critical elements to reduce the uncertainty in rainfall-runoff model. In this study, grid resolution depending on the topographic factor in rainfall-runoff models presents how to respond. semi-distribution of rainfall-runoff model using the model GRM simulated and calibrated rainfall-runoff in the Gamcheon and Naeseongcheon watershed. To run the GRM model, input grid data used rainfall (two event), DEM, landuse and soil. This study selected cell size of 500 m(basic), 1 km, 2 km, 5 km, 10 km and 12 km. According to the resolution of each grid, in order to compare simulation results, the runoff hydrograph has been made and the runoff has also been simulated. As a result, runoff volume and peak discharge which simulated cell size of DEM 500 m~12 km were continuously reduced. that results showed decrease tendency. However, input grid data except for DEM have not contributed increase or decrease runoff tendency. These results showed that the more increased cell size of DEM make the more decreased slope value because of the increased horizontal distance.