DOI QR코드

DOI QR Code

Spatial analysis of water shortage areas considering spatial clustering characteristics in the Han River basin

공간군집특성을 고려한 한강 유역 물부족 지역 분석

  • Lee, Dong Jin (Department of Civil and Environmental System Engineering, Hanyang University) ;
  • Son, Ho-Jun (Department of Smart City Engineering, Hanyang University) ;
  • Yoo, Jiyoung (Research Institute of Engineering & Technology, Hanyang University (ERICA)) ;
  • Kim, Tae-Woong (Department of Civil and Environmental Engineering, Hanyang University (ERICA))
  • 이동진 (한양대학교 대학원 건설환경시스템공학과) ;
  • 손호준 (한양대학교 대학원 스마트시티공학과) ;
  • 유지영 (한양대학교(ERICA) 공학기술연구소) ;
  • 김태웅 (한양대학교(ERICA) 건설환경공학과)
  • Received : 2022.12.29
  • Accepted : 2023.04.18
  • Published : 2023.05.31

Abstract

In August 2022, even though flood damage occurred in the metropolitan area due to heavy rain, drought warnings were issued in Jeolla province, which indicates that the regional drought is intensified recent years. To cope with regarding intensified regional droughts, many studies have been conducted to identify spatial patterns of the occurrence of meteorological drought, however, case studies of spatial clustering for water shortage are not sufficient. In this study, using the estimations of water shortage in the Han River Basin in 2030 of the Master Plans for National Water Management, the spatial characteristics of water shortage were analyzed to identify the hotspot areas based on the Local Moran's I and Getis-Ord Gi*, which are representative indicators of spatial clustering analysis. The spatial characteristics of water shortage areas were verified based on the p-value and the Moran scatter plot. The overall results of for three anayisis periods (S0(1967-1983), S1(1984-2000), S2(2001-2018)) indicated that the lower Imjin River (#1023) was the hotspot for water shortage, and there are moving patterns of water shortage from the east of lower Imjin River (#1023) to the west during S2 compared to S0 and S1. In addition, the Yangyang-namdaecheon (#1301) was the HL area that is adjacent to a high water shortage area and a low water shortage area, and had water shortage pattern in S2 compared to S0 and S1.

2022년 8월 수도권지역은 집중호우로 홍수피해가 발생하는 반면 전라지역은 가뭄 주의 단계가 발령되었다. 이는 가뭄의 지역적 집중도가 최근 들어 심화되고 있다는 것을 보여준다. 이와 같이 심화되는 지역적 가뭄에 대응하기 위하여 기상학적 가뭄 발생의 지역적 패턴을 분석하는 연구가 많이 수행되고 있지만, 물부족 지역에 대한 공간적 군집 연구사례는 많지 않다. 본 연구에서는 국가물관리기본계획의 2030년 한강 유역 물부족량 전망자료를 바탕으로 공간군집분석 지표인 Local Moran's I, Getis-Ord Gi*를 이용하여 물부족 지역의 공간적 군집 특성을 분석하고 물부족 핫스팟 지역을 파악하였다. 공간적 군집 특성은 p-값 및 모란 산점도를 통해 적정성을 검증하였다. 시기별(S0(1967~1983), S1(1984~2000), S2(2001~2018)) 공간군집 이동패턴을 분석한 결과, 임진강하류(#1023)가 물부족이 심각한 핫스팟 지역으로 나타났고, S0~S1 대비 S2 시기에 임진강하류(#1023) 동쪽에서 서쪽으로 점차 확산되는 물부족 이동패턴이 나타났다. 양양남대천(#1301)은 HL (해당지역은 물부족량이 많고 주변지역은 물부족량이 적은) 지역으로 나타났고, S0~S1 대비 S2 시기에 양양남대천(#1301)으로 물부족이 발생하는 것으로 나타났다.

Keywords

Acknowledgement

이 논문은 행정안전부 재난안전공동연구기술개발사업(2022-MOIS63-001)의 지원을 받아 수행된 연구입니다.

References

  1. Anselin, L. (2005). Exploring spatial data with GeodaTM : A workbook, spatial analysis laboratory. Department of Geography, University of Illinois, Urbana-Campaign, Urbana, IL, U.S.
  2. Byun, H. (2009). "A comparative analysis of drought diagnostics and their systems." The Magazine of the Korean Society of Hazard Mitigation, Vol. 9, No. 2, pp. 7-18. (in Korean)
  3. Chae, J., Park, S., and Byu, B. (2014). "An analysis of spatial concentrated areas of single person households and concentrating factors in Seoul." Seoul Studies, Vol. 15, No. 2, pp. 1-16. (in Korean) https://doi.org/10.23129/SEOULS.15.2.201406.1
  4. Cho, D. (2013). "Trends and methodological issues in spatial cluster analysis for count data." Journal of the Korean Geographical Society, Vol. 48, No. 5, pp. 768-785. (in Korean)
  5. Chung, K.S. (2012). "Busan housing market dynamics analysis with ESDA using MATLAB application." Journal of Korea Contents Association, Vol. 12, pp. 461-471. (in Korean) https://doi.org/10.5392/JKCA.2012.12.02.461
  6. Jang, M. (2016). "Analysis on the characteristics of urban decline using GIS and spatial statistical method: The case of Gwangju Metropolitan City." Journal of The Korean Association of Regional Geographers, Vol. 22, No. 2, pp. 424-438. (in Korean)
  7. Joint Ministries (2020a). National drought information statistics for 2018. Publication No. 11-1741000-000244-10, p. 332. (in Korean)
  8. Joint Ministries (2020b). The 1st master plans for national water management establishment research. Publication No. 11-1480000-001831-01, pp. 624-631. (in Korean)
  9. Joint Ministries (2021). The 1st master plans for national water management. Publication No. 11-1480000-001756-14, Vol. 22, No. 2, pp. 49-53. (in Korean)
  10. Kang, H.J. (2008). "Hot spot analysis: Basis of spatial analysis, utilization and understanding of local Moran's I and nearest neighbor analysis." Planning and Policy, Vol. 324, pp. 116-121. (in Korean)
  11. Kim, C.R., Kim, Y.-O., Seo, S.B., and Choi, S.-W. (2013). "Water balance projection using climate change scenarios in the Korean Peninsula." Journal of Korea Water Resources Association, Vol. 46, pp. 807-819. (in Korean) https://doi.org/10.3741/JKWRA.2013.46.8.807
  12. Kim, G.G. (2003) "Exploration of spatial autocorrelation and utilization of spatial regression analysis." Journal of Korean Association for Policy Analysis and Evaluation, Vol. 13, pp. 273-294. (in Korean)
  13. Lee, J.H., Park, S.Y., and Kim, J.S. (2018). "Extreme drought hotspot analysis for adaptation to a changing climate : Assessment of applicability to the five major river basins of the Korean Peninsula." International Journal of Climatology, Vol. 38, No. 1, pp. 4025-4032. https://doi.org/10.1002/joc.5532
  14. Lee, S.H., Chang, H., and Rho, J.A. (2011) "The changes in the quality of life measure of the Seoul Metropolitan Area." Journal of Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography, Vol. 29, pp. 29-37. (in Korean) https://doi.org/10.7848/ksgpc.2011.29.1.29
  15. Liu, Y., Liu, Y., Wang, W., and Zhou, H. (2021). "Propagation of soil moisture droughts in a hotspot region: Spatial pattern and temporal trajectory." Journal of Hydrology, Vol. 593, 125906.
  16. Meysam, S., Ali-Mohammad, A.A., Arash, A., and Alireza, D. (2012). "Trend and change-point detection for the annual stream-flow series of the Karun River at the Ahvaz hydrometric station." African Journal of Agricultural Research, Vol. 7, No. 32, pp. 4540-4552.
  17. Oh, J.H., Kim, Y.-S., Ryu, K.S., and Bae, Y.D. (2019). "Comparison and discussion of water supply and demand forecasts considering spatial resolution in the Han-river basin." Journal of Korea Water Resources Association, Vol. 52, pp. 505-514. (in Korean)
  18. Park, H.B. (2018). A study on the overcrowding distribution and location influence factors of elderly care facilities in Seoul Metropolitan Area. Ph. D. Dissertation. Gachon University, pp. 38-45.
  19. Pettitt, A.N. (1979). "A non parametric approach to the change point problem." Journal of the Royal Statistical Society: Series C (Applied Statistics), Vol. 28, No. 2, pp. 126-135. https://doi.org/10.2307/2346729
  20. Son, H.J., Byun, S.H., Park, J.W., and Kim, T.W. (2023). "Analysis of drought hotspot areas using local indicators of spatial association in the Nakdong River basin." KSCE Journal of Civil and Environmental Engineering, Vol. 43, No. 2, pp. 175-185. (in Korean)
  21. Tobler, W. (1970). "A computer movie simulation urban growth in the Detroit region." Economic Geography, Vol. 46, Supplement, pp. 234-240. https://doi.org/10.2307/143141
  22. Water Resources Management Information System (WAMIS) (2022). Korea, accessed 20 December 2022, .
  23. Zhang, S., and Lu, X.X. (2009). "Hydrological responses to precipitation variation and diverse human activities in a mountainous tributary of the lower Xijiang, China." Catena, Vol. 77, No. 2, pp. 130-142. https://doi.org/10.1016/j.catena.2008.09.001