• Title/Summary/Keyword: flood damage

Search Result 776, Processing Time 0.021 seconds

A Study on the Consciousness Survey for the Establishment of Safety Village in Disaster (재난안전마을 구축을 위한 의식조사 연구)

  • Koo, Wonhoi;Baek, Minho
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.3
    • /
    • pp.238-246
    • /
    • 2018
  • Purpose: The purpose of this study is to examine the directions for establishing a disaster safety village in rural areas where damage from a similar type of disaster occurs repeatedly by conducting the consciousness survey targeting at experts and disaster safety officials in a local government. Method: The risks of disaster in rural areas were examined and the concept and characteristics of disaster safety village which is a measure on the basis of Myeon (township) among the measures of village unit were examined in order to carry out this study. In addition, opinion polling targeting at officials-in-charge in the local government and survey targeting at experts in disaster safety and building village were conducted. Based on the findings, the directions for establishing a disaster safety village that fitted the characteristics of rural areas were examined. Result: The officials-in-charge in the local government answered that rural areas have a high risk of storm and flood such as heavy snowing, typhoon, drought, and heavy rain as well as forest fire, and it is difficult to draw voluntary participation of farmers for disaster management activities due to their main duties. They also replied that active support and participation of residents in rural areas are necessary for future improvement measures. The experts mostly replied that the problem of disaster safety village project is a temporary project which has low sustainability, and the lack of connections between the central government, local governments and residents was stressed out as the difficulties. They said that measures to secure the budget and the directions of project promotion system should be promoted by the central government, local governments and residents together. Conclusion: The results of this study are as follows. First, a disaster safety village should be established in consideration of the disaster types and characteristics. Second, measures to secure the budget for utilizing the central government fund as well as local government fund and village development fund should be prepared when establishing and operating a disaster safety village in rural areas. Third, measures to utilize a disaster safety village in rural areas for a long period of time such as the re-authorization system should be prepared in order to continuously operate and manage such villages after its establishment. Fourth, detailed measures that allow residents of rural areas to positively participate in the activities for establishing a disaster safety village in rural areas should be prepared.

A Study of Fish Community on Up and Downstream of Hwabuk Dam Under Construction in the Upper Wie Stream. (위천 상류에 건설 중인 화북댐 상 하류 어류군집에 관한 연구)

  • Seo, Jin-Won;Kim, Hee-Sung
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.2
    • /
    • pp.260-269
    • /
    • 2009
  • Hwabuk Dam has been under construction to reduce flood damage in Nakdong River watershed and to supply stable water for middle area of Gyeongbuk Province. Therefore, fish investigation in up and downstream of the dam was conducted from 2004 to 2008 in order to determine any negative effect on fish community due to dam construction and to use as fundamental data for conserving species diversity and maintaining stream health. According to data analysis on water quality, temperature, dissolved oxygen, pH, suspended solids, and total E-coli had seasonal variation, but they did not significantly differ in sites. However, biological and chemical oxygen demand, chlorophyll-a, nitrogen, and phosphorus representing organic matter and nutrient concentration were higher in upper site and decreased to lower site so that they differed by site. Concentration of arsenic among the heavy metals was less than 0.05 mg $L^{-1}$, which is regulated for protection of human health in water quality standard, except for 0.092 mg $L^{-1}$ in June 2005. During the study period, the total number of fish caught from the 6 sites was 10,263 representing 7 families 19 species. Among them, dominant and subdominant species were Korean chub (Zacco koreanus, 62.5%) and Chinese minnow (Rhynchocypris oxycephalus, 10.6%) which inhabit mostly in mid and upper streams, Korea. Among the 19 species, Korean endemic species were 9 species (47.4%) including Korean slender gudgeon (Squalidus gracilis majimae), Korean dark sleeper (Odontobutis platycephala), and Korean shiner (Coreoleuciscus splendidus). There was several individuals of the $1^{st}$-class endangered species, Naktong nose loach (Koreocobitis nahtongensis), caught in 2005${\sim}$2007, and no introduced species of fish was found in entire sampling period. According to result of community analysis, dominance index decreased toward lower site, but diversity and richness indices increased toward lower site. The equation of length-weight relationship on the dominant species was TW=0.000003$(TL)^{3.2603}$. The parameter b in the equation was greater than 3.0 indicating good nutritional condition in the populations. Compared to populations of Korean chub in other streams, the population in Hwabuk Dam watershed had higher mean of condition factor by size indicating better growth rate. With fish fauna and multi-metric health assessment model in each sampling attempt, index of biotic integrity (IBI) was evaluated and it resulted mostly in good (26${\sim}$35) and excellent (36${\sim}$40) condition in all sites, and the mean of IBI was the highest in site 5. The results indicate that it is very important to study not only environmental impact assessment with fish composition but also stream health assessment in order to conserve healthy aquatic ecosystem.

A Study on the Influence of the Water System on the Location and Spatial Structure of Hongju-seong (수체계가 홍주성의 입지와 공간구조 변천과정에 미친 영향)

  • Lee, Kyung-Chan;Kang, In-Ae
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.38 no.4
    • /
    • pp.12-24
    • /
    • 2020
  • The purpose of this study is to analyze the influence of the water system on the location, spatial structure, and construction method of Hongju-eupseong, centering on Hongjumok-eupchi. During the Joseon Dynasty, the water system in Hongjumok-eupchi is composed of artificially constructed Seong-an Runnel and ponds based on a branch-shaped natural waterways flowing from south to north and west to east. Compiling the results of various literature records, excavations and analysis of map data, it can be seen that the water system has an important influence on the construction of Hongju-seong. Firstly, Hongju-seong from the Goryeo Dynasty to the late Joseon Dynasty is located using a circular shape of topographical structure and a small erosion basin formed on the inner side of the Hongseongcheon and Wolgyecheon streams without significant change in location. In particular, Wolgyecheon and Hongseongcheon are natural moats, which are harmonized with Sohyangcheon and riverside topographical structures, affecting the location and construction method of Hongju-seong, water related facilities, and the spatial structure of eupseong. It is understood that location characteristic of Hongju-seong reflects the urban location structure harmonized with waterways in ancient China and Korea. Secondly in harmony with the water system and topographic structure of Hongju-seong, it is an important factor in deciding the land use of the town, the arrangement of the town hall facilities and inducing various non-subsidiary measures such as the establishment of embankment forest with a secret function and the closure of the south gate. In addition, artificial drainage facilities such as Seongan runnel and ponds are being actively introduced from early on to protect the walls or towns from flooding of Wolgyecheon. Especially there were typical methods for protecting the walls from water damage such as the Joseon Dynasty stone castle structure that was integrated with saturn(soil wall) in the Goryeo Dynasty, retreating wall in the northern gate area in the late Joseon Dynasty, and the method of constructing wall using korean tile and stone floors between reinforced soil layers in the western and northern wall.

A study on the derivation and evaluation of flow duration curve (FDC) using deep learning with a long short-term memory (LSTM) networks and soil water assessment tool (SWAT) (LSTM Networks 딥러닝 기법과 SWAT을 이용한 유량지속곡선 도출 및 평가)

  • Choi, Jung-Ryel;An, Sung-Wook;Choi, Jin-Young;Kim, Byung-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1107-1118
    • /
    • 2021
  • Climate change brought on by global warming increased the frequency of flood and drought on the Korean Peninsula, along with the casualties and physical damage resulting therefrom. Preparation and response to these water disasters requires national-level planning for water resource management. In addition, watershed-level management of water resources requires flow duration curves (FDC) derived from continuous data based on long-term observations. Traditionally, in water resource studies, physical rainfall-runoff models are widely used to generate duration curves. However, a number of recent studies explored the use of data-based deep learning techniques for runoff prediction. Physical models produce hydraulically and hydrologically reliable results. However, these models require a high level of understanding and may also take longer to operate. On the other hand, data-based deep-learning techniques offer the benefit if less input data requirement and shorter operation time. However, the relationship between input and output data is processed in a black box, making it impossible to consider hydraulic and hydrological characteristics. This study chose one from each category. For the physical model, this study calculated long-term data without missing data using parameter calibration of the Soil Water Assessment Tool (SWAT), a physical model tested for its applicability in Korea and other countries. The data was used as training data for the Long Short-Term Memory (LSTM) data-based deep learning technique. An anlysis of the time-series data fond that, during the calibration period (2017-18), the Nash-Sutcliffe Efficiency (NSE) and the determinanation coefficient for fit comparison were high at 0.04 and 0.03, respectively, indicating that the SWAT results are superior to the LSTM results. In addition, the annual time-series data from the models were sorted in the descending order, and the resulting flow duration curves were compared with the duration curves based on the observed flow, and the NSE for the SWAT and the LSTM models were 0.95 and 0.91, respectively, and the determination coefficients were 0.96 and 0.92, respectively. The findings indicate that both models yield good performance. Even though the LSTM requires improved simulation accuracy in the low flow sections, the LSTM appears to be widely applicable to calculating flow duration curves for large basins that require longer time for model development and operation due to vast data input, and non-measured basins with insufficient input data.

A Study on the Gwanbang forest of Ganghwa in the Joseon Dynasty Period (조선시대 강화지역 관방림(關防林)의 특성 연구)

  • Shim, Sun-Hui;Lee Jae-Yong;Kim, Choong-Sik
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.41 no.1
    • /
    • pp.35-46
    • /
    • 2023
  • This study investigated and analyzed ancient records on the type, planting background, and construction process of Gwanbang forest(關防林) planned for military defense during the Joseon Dynasty to find out the purpose, location, and planting species of Gwanbang forest. The research results were as follows. During the Joseon Dynasty, Gwanbang forests were created around various government facilities(關防施設), such as Eupseong(邑城), major government offices, camps, and fortifications, for the purpose of defending against enemies. Gwanbang forest includes Yeongaeglim(嶺阨林), which was created on the crest of a strategically important hill, and Military Forest created for military purposes. Most of the spirit forest was designated as Geumsan(禁山) and protected and managed, and the Gwanbang forest was created for various purposes such as shielding, flood damage and river bank erosion prevention as well as external defense. In addition, in order to continuously and efficiently produce wood, which is a material for ships, buildings, and agricultural tools, in most cases, large areas were created as mixed forests. As for the species constituting the Gwanbang forest, there are records of tangerine tree, which is effective for defense because it has thorns, and deciduous broad-leaved trees such as zelkova, elm, willow, david hemiptelea, and oak appear. In the case of Ganghwa island, which served as the defense of the capital and the royal family during the Joseon Dynasty, several records have confirmed that a forest densely planted with trifoliate orange was created for the purpose of Gwanbang forest to reinforce the defense of the outer fortress. Based on historical research in the literature, assuming that the natural monument 'Gapgotri tangerine tree in Ganghwa Island' was planted in the 30th year of King Sukjong(1704), the first record of planting trifoliate orange in Ganghwa Island, the maximum age is estimated to be more than 319 years.

Study on the Trend of Aggregate Industry (국내외 골재산업 동향 연구)

  • Kwang-Seok Chea;Namin Koo;Young Geun Lee;Hee Moon Yang;Ki Hyung Park
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.2
    • /
    • pp.135-145
    • /
    • 2023
  • Aggregate is used to produce stable materials like concrete and asphalt and is fundamental to meet the social needs of housing, industry, road, energy and health. A total of 42.35 billion tons of aggregate were produced in 2021 worldwide, an increase of 0.91% compared to the previous year. Among them, 2 billion tons were produced in China, India, European Union and United States, making up to 71.75% of the share. South Korea has witnessed a constant increase in aggregate production, overtaking Mexico and Japan for seventh place with 390 million tons and 0.85% of the share. The industrial sand and gravel produced globally amounted to 352.66 million tons. The top seven countries with the highest production were China, United States, Netherlands, Italy, India, Turkey and France, and their production exceeded 10 million tons and held a share of 74.69%. Exports of natural rock recorded $21.68 billion in 2021, increased by $2.3 billion compared to the previous year, while exports of artificial rock increased by $2.66 billion to $13.59 billion. Exports of sand reached $1.71 billion with United States, Netherlands, Germany and Belgium being the four countries with the highest exports of sand. The four countries exported more than $100 million in sand and took up 57.70% of the total amount. Exports of gravel totaled $2.75 billion, with China, Norway, Germany, Belgium, France and Austria in the lead, making up to 48.30% of the total share. The aggregate quarry started to surge in the 1950s due to the change in people's lifestyle such as population growth, urbanization and infrastructure delvelopment. Demand for aggregate is also skyrocketing to prevent land reclamation and flood caused by sea-level rise. Demand for aggregate, which was around 24 gigatons in 2011, is expected to double to 55 gigatons in 2060. However, it is likely that aggregate extraction will heavily damage the ecosystem and the world will eventually face a shortage of aggregate followed by tense social conflict.