• Title/Summary/Keyword: flood control method

Search Result 231, Processing Time 0.024 seconds

The Rating Curve of Goan Station for Calibration of Discharge of Paldang Dam (팔당댐 방류량 검정을 위한 고안지점 수위-유량 관계곡선의 작성)

  • 서규우;허준행
    • Water for future
    • /
    • v.28 no.6
    • /
    • pp.169-181
    • /
    • 1995
  • No correction has been made for the rating curve of Goan Station since 1986 even though there has been a severe bed degradation until now. Furthermore, it was informed to Han River Flood Control Center that there was a difference between the discharge released from Paldang dam and the discharge observed at Goan station during 1990 flood. By considering such river bed changes, hydraulic model experiment with 1/100 scale was performed for the range of 2.2 km, which covers from Paldang dam to the downstream of Goan station. From this experiment, the rating curve was obtained by considering the discharges from Paldang dam and the corresponding water levels at Goan station. Also, the exsitingand the proposed rating curves were compared with those by computational method of RMA-2V.

  • PDF

Real time forecasting of rainfall-runoff using multiple model adaptive estimation (다중모델적응추정방식을 이용한 강우-유출량의 실시간 예측)

  • 최선욱;김운해;김영철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.24-27
    • /
    • 1996
  • The storage function method(SFM) is one of hydrologic flood routings which has been used most widely in Korea and Japan. This paper presents a storage function method using multiple model adaptive estimation(MMAE), in which a model set is generated by partitioning storage parameters over feasible range, and each storage function model is estimated, and then the weighted average of them is calculated. Finally, the future runoff is predicted in real time by means of observed data of water level at dam and rainfall. Simulation results applied to actual data show that the proposed method has much better performance than that of conventional SFM.

  • PDF

Hierarchical Compression Technique for Reflectivity Data of Weather Radar (기상레이더 반사도 자료의 계층적 압축 기법)

  • Jang, Bong-Joo;Lee, Keon-Haeng;Lim, Sanghun;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.7
    • /
    • pp.793-805
    • /
    • 2015
  • Nowadays the amount of data obtained from advanced weather radars is growing to provide higher spatio-temporal resolution. Accordingly radar data compression is important to use limited network bandwidth and storage effectively. In this paper, we proposed a hierarchical compression method for weather radar data having high spatio-temporal resolution. The method is applied to radar reflectivity and evaluated in aspects of accuracy of quantitative rainfall intensity. The technique provides three compression levels from only 1 compressed stream for three radar user groups-signal processor, quality controller, weather analyst. Experimental results show that the method has maximum 13% and minimum 33% of compression rates, and outperforms 25% higher than general compression technique such as gzip.

Multi-Dimensional Flood Damage Analysis (Ⅱ): Application (다차원 홍수피해산정방법 (Ⅱ): 적용)

  • Choi, Seung-An;Yi, Choong-Sung;Shim, Myung-Pil;Kim, Hung-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.1 s.162
    • /
    • pp.11-22
    • /
    • 2006
  • This study is that MD-FDA and the existing method were applied together the outlet project under the construction in the Gulpo River basin. The results of both of them mot the economic feasibility of the Project. But, MD-FDA evaluated the suitable damage according to situations; 1) without project, 2) after 20m outlet construction, 3) after 80m outlet construction. That is, MD-FDA could exactly evaluate the Annual Expected Flood Damage by considering the characteristics to the inundated area. If M-FDA may use in the flood control projects, the projects will be able to be taken into account all characteristics of the total damage area and performed by reasonable criteria.

Spatial Extension of Runoff Data in the Applications of a Lumped Concept Model (집중형 수문모형을 활용한 홍수유출자료 공간적 확장성 분석)

  • Kim, Nam Won;Jung, Yong;Lee, Jeong Eun
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.9
    • /
    • pp.921-932
    • /
    • 2013
  • Runoff data availability is a substantial factor for precise flood control such as flood frequency or flood forecasting. However, runoff depths and/or peak discharges for small watersheds are rarely measured which are necessary components for hydrological analysis. To compensate for this discrepancy, a lumped concept such as a Storage Function Method (SFM) was applied for the partitioned Choongju Dam Watershed in Korea. This area was divided into 22 small watersheds for measuring the capability of spatial extension of runoff data. The chosen total number of flood events for searching parameters of SFM was 21 from 1991 to 2009. The parameters for 22 small watersheds consist of physical property based (storage coefficient: k, storage exponent: p, lag time: $T_l$) and flood event based parameters (primary runoff ratio: $f_1$, saturated rainfall: $R_{sa}$). Saturated rainfall and base flow from event based parameters were explored with respect to inflow at Choongju Dam while other parameters for each small watershed were fixed. When inflow of Choongju Dam was optimized, Youngchoon and Panwoon stations obtained average of Nash-Sutcliffe Efficiency (NSE) were 0.67 and 0.52, respectively, which are in the satisfaction condition (NSE > 0.5) for model evaluation. This result is showing the possibility of spatial data extension using a lumped concept model.

Evaluation of flexible criteria for river flow management with consideration of spatio-temporal flow variation (시·공간적 유량 변화를 고려한 탄력적 하천관리 기준유량 산정 및 평가)

  • Park, Jung Eun;Kim, Han Na;Ryoo, Kyong Sik;Lee, Eul Rae
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.8
    • /
    • pp.673-683
    • /
    • 2016
  • An Idea to estimate flexible criteria for river water use permits was proposed that takes the spatio-temporal flow variation along the river into account, which was applied to the Keumho River, one of the tributary of the Nakdong River in Korea. This idea implies the temporal division of four periods with different criteria, combining flood/non-flood seasons and irrigation/non-irrigation periods, while a single one has been applied throughout the year in the current practice. Through flow regime analysis of daily natural flow simulations at Dongchon and Seongseo, the control points of the study area, Q355 and 1Q10 for non-flood and non-irrigation period, Q275 for non-flood and irrigation period, Q185 for flood and irrigation period were suggested respectively. So, those values that subtract instream flow were determined as the flexible criteria in each season. From the comparison of current practice and the proposed method, it was estimated that $10.6\;million\;m^3/year$ is available for more water use permits without additional development of water storage. Therefore, it is conceived that flexible criteria for river water use permission suggested in this study can contribute to improve the national policies for more efficient water resources management in the future.

Development of artificial intelligence-based river flood level prediction model capable of independent self-warning (독립적 자체경보가 가능한 인공지능기반 하천홍수위예측 모형개발)

  • Kim, Sooyoung;Kim, Hyung-Jun;Yoon, Kwang Seok
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.12
    • /
    • pp.1285-1294
    • /
    • 2021
  • In recent years, as rainfall is concentrated and rainfall intensity increases worldwide due to climate change, the scale of flood damage is increasing. Rainfall of a previously unobserved magnitude falls, and the rainy season lasts for a long time on record. In particular, these damages are concentrated in ASEAN countries, and at least 20 million people among ASEAN countries are affected by frequent flooding due to recent sea level rise, typhoons and torrential rain. Korea supports the domestic flood warning system to ASEAN countries through various ODA projects, but the communication network is unstable, so there is a limit to the central control method alone. Therefore, in this study, an artificial intelligence-based flood prediction model was developed to develop an observation station that can observe water level and rainfall, and even predict and warn floods at once at one observation station. Training, validation and testing were carried out for 0.5, 1, 2, 3, and 6 hours of lead time using the rainfall and water level observation data in 10-minute units from 2009 to 2020 at Junjukbi-bridge station of Seolma stream. LSTM was applied to artificial intelligence algorithm. As a result of the study, it showed excellent results in model fit and error for all lead time. In the case of a short arrival time due to a small watershed and a large watershed slope such as Seolma stream, a lead time of 1 hour will show very good prediction results. In addition, it is expected that a longer lead time is possible depending on the size and slope of the watershed.

Best Measurement Capability and Standard Test Facility for the Water-level Gauges (수위계 표준시험장치 개발 및 최고측정능력에 관한 연구)

  • Shin, Gang-Wook;Hong, Sung-Taek
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.10
    • /
    • pp.1012-1017
    • /
    • 2007
  • Rain data and water-level data are importantly used for dam operation at flood period. Because dams are directly controlled by the water-level data, the characteristic of the water-level gauges is necessary to be managed. Thus, we developed the standard test facility and method for testing the water-level gauges which are a float type, a supersonic type and a radar type. And we calculated the uncertainty of the standard test facility to maintain the accuracy of water-level gauges. Through development of this facility, we could obtain the characteristics and the calibration factor of the water-level gauges. And, this study showed that the standard test facility can be widely used for dam operation and basin management.

Drought Monitoring with Indexed Sequential Modeling

  • Kim, Hung-Soo;Yoon, Yong-Nam
    • Korean Journal of Hydrosciences
    • /
    • v.8
    • /
    • pp.125-136
    • /
    • 1997
  • The simulation techniques of hydrologic data series have develped for the purposes of the design of water resources system, the optimization of reservoir operation, and the design of flood control of reservoir, etc. While the stochastic models are usually used in most analysis of water resources fields for the generation of data sequences, the indexed sequential modeling (ISM) method based on generation of a series of overlapping short-term flow sequences directly from the historical record has been used for the data generation in the western USA since the early of 1980s. It was reported that the reliable results by ISM were obtained in practical applications. In this study, we generate annual inflow series at a location of Hong Cheon Dam site by using ISM method and autoregressive, order-1 model (AR(1)), and estimate the drought characteristics for the comparison aim between ISM and AR(1).

  • PDF

A Study on Quality Control Method for Minutely Rainfall Data (분 단위 강우자료의 품질 개선방안에 관한 연구)

  • Kim, Min-Seok;Moon, Young-Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.2
    • /
    • pp.319-326
    • /
    • 2015
  • Rainfall data is necessary component for water resources design and flood warning system. Most analysis are used long-term hourly data of surface synoptic stations from the Meteorological Administration, Ministry of land, Infrastructure and Transport and others. However, It will be used minutely data of more high density automatic weather stations than surface synoptic stations expecting to increase the frequency of heavy precipitation. But minutely data has a problem about quality of rainfall data by auto observation. This study analyzed about quality control method using automatic weather station's minutely rainfall data of meteorological administration. It was performed assessment of the quality control that was classified quality control of miss Data, outlier data and rainfall interpolation. This method will be utilized when hydrological analysis uses minute rainfall data.