• Title/Summary/Keyword: floating solar photovoltaic system

Search Result 20, Processing Time 0.025 seconds

Design and Analysis of State-of-the-Art Technologies for Development of Floating Photovoltaic System (수상태양광 발전시스템 설계 및 요소기술 분석)

  • Jin, Taeseok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.17 no.4
    • /
    • pp.227-233
    • /
    • 2014
  • Information presented in this study is intended to inform candidates as they prepare to design and structure the floatovoltaics solar power system. A developed floatovoltaics solar power generation results from the combination of PV plant technology and PV floating technology. This floating-based PV system is a new concept for PV development. The PV floating technology opens new opportunities to give value to unused areas so far while preserving valuable land for more adapted activities. Therefore the land-use conflicts are avoided and the environmental impact is minimized. Therefore the technology offers an interesting opportunity to regions facing on drought during summer time without any negative impact to the eco-system. This study describe the basic components of a floatovoltaics solar power system. A typical system consist of floating system and solar modules, a control device, rechargeable batteries, a load or device and the associated electrical connections. The floating system is specifically designed to keep all metallic components above water leaving only 100% recyclable, closed cell foam filled HDPE plastic floats in contact with the water. As the first case that can maximize the power generation efficiency of PV internationally, it is expected that this study will be utilized as a primary guide for future development of floating type PV system.

Safety Evaluation of Solar Power System in High Humidity Environment (다습환경 태양광발전시스템 안전성 평가)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.2
    • /
    • pp.181-186
    • /
    • 2019
  • The floating photovoltaic system is a new concept in the renewable energy technology. That is similar to land based photovoltaic technology except floating system. So the system needs buoyant objects, mooring, ect, besides modules and supports, and that is able to withstand in water level changes and wind strength. Therefore the floating photovoltaic system is much different from land photovoltaic system. Unlike land-based photovoltaics developed on the rooftop and in the mountains of buildings, The floating photovoltaic power generation is a new concept in power generation technology in which photovoltaic modules are installed using buoyancy on the surfaces of dams and reservoirs. It is abundant enough to construct a power plant with a power generation potential of about 5% and a power generation capacity of 4,170MW, so that the land can be efficiently used without destroying the environment. In this paper, the technical standard for evaluating safety in addition to the water-state photovoltaic power generation system is not established yet, and the items to be considered for standardization of the water-state photovoltaic power generation system are summarized in this paper.

Development of A Floating Solar Thermoelectric Generator Using A Dome Shaped Fresnel Lens for Ocean Application

  • Seong-Hoon Kim;Jeung-Sang Go
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_1
    • /
    • pp.1001-1010
    • /
    • 2023
  • To solve the problem that photovoltaic panels can not harvest electrical energy at a cloudy day and night, a floating solar thermoelectric generator (FSTEG, hereafter) is studied. The FSTEG is consisted of a dome shaped Fresnel lens to condense solar energy, a thermoelectric module connected with a heat sink to keep temperature difference, a floating system simulating a wavy ocean and an electrical circuit for energy storage. The dome shaped Fresnel lens was designed to have 29 prisms and its optical performance was evaluated outdoors under natural sunlight. Four thermoelectric modules were electrically connected and its performance was evaluated. The generated energy w as stored in a Li-ion battery by using a DC-DC step-up converter. For the application of ocean environment, the FSTEG was covered by the dome shaped Fresnel lens and sealed to float in a water-filled reservoir. The harvested energy shows a potential and a method that the FSTEG is suitable for the energy generation in the ocean environment.

Floating Photovoltaic Plant Location Analysis using GIS (GIS를 활용한 수상 태양광 발전소 입지 분석)

  • Lee, Ki Rim;Lee, Won Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.1
    • /
    • pp.51-59
    • /
    • 2016
  • Global consumption of fossil fuels continues to increase. As developing countries use fossil fuel as much as the existing fossil fuel using countries, the total amount of fossil fuel consumed has risen. The finite fossil energy depletion insecurity have become serious. In addition, fossil energy is caused by environmental pollution, economic and social problems remain in assignments that need to be addressed. Although solar power is clean and has many benefits, there are several problems in the process of installing a solar power plant. To solve these problems, floating photovoltaic plants has emerged as an alternative. This floating photovoltaic plants location analysis has not been made yet. In this study, the conditions of the floating photovoltaic plants location is analyzed with the Analytic Hierarchy Process using the terrain and climate factors. The score is assigned to the attribute information of each factor by the classification table. After multiplied by the weight the result is analyzed by visualization of the score. As the result, the score of the northen part of Gyeongsangbuk-do province is higher than the southern part of Gyeongsangbuk-do province. Especially Andongho lake in Andong City and the reservoir in Yeongyang-Gun are extracted as the optimal location. The score of the river boundary is low not the center of the river stream. It is expected that this study would be a more accurate floating solar power plant location analysis.

Calculation of Appropriate Subsidies for Energy Storage System to Improve Power Self-sufficiency Consider Microgrid Operation (마이크로그리드 운영에 따른 전력자립 향상을 위한 에너지저장장치의 적정보조금 산정)

  • Choi, Yeon-Ju;Kim, Sung-Yul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.3
    • /
    • pp.486-492
    • /
    • 2017
  • In recent years, renewable energy sources have been mentioned as solution to environmental regulation and energy supply-demand. Energy storage systems are needed to mitigate the intermittent output characteristics of renewable energy sources and to operate micro grid efficiently using renewable energy generation systems. However, despite the necessity of energy storage system, this cannot secure the economical efficiency of the energy storage system by high initial cost. In this paper, a micro grid is constructed to supply electric power to industrial customers by using solar power generation system and energy storage system among renewable energy generation power sources and operated to improve energy independence. In the case study, we use photovoltaic system which is representative renewable energy generation system. Unlike conventional photovoltaic system, this system uses floating photovoltaic system with the advantage of having high output and no land area limitations. It is operated for the purpose of improving energy independence in the micro grid. In order to secure economical efficiency, the energy storage system operates a micro grid with a minimum capacity. Finally, this paper calculates the appropriate subsidy for the energy storage capacity.

An Assessment on Effect of Facility and Electrical Safety During the Flooding of the Photovoltaic Power System (태양광 발전설비의 침수 시 설비영향 및 전기적 안전성 평가)

  • Park, Chan-Eom;Jung, Jin-Soo;Han, Un-Ki;Lim, Hyun-Sung;Song, Young-Sang
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.12
    • /
    • pp.38-44
    • /
    • 2014
  • The photovoltaic power system is performing power generation by being installed in outdoors. Therefore it has the characteristics affected by environmental factors. In particular, if the solar power generation facility connected to the grid, the power can be generated continuously in a state of being secured operating voltage of the inverter and solar irradiation. In that case, if an abnormal situation such as flooding or heavy rains has occur, the possibility of electric shock or damage of facilities due to current leakage or a floating matters is present. In this paper, we performed electrical safety assessment about the connection part, junction box and cable of the solar module when the solar power system was flooded. we also assessed whether or not the leakage current is occurred in case of the cable was damaged. As a result, in case of the leakage current is large, we can be known that it is the risk of electric shock as well as cause of inverter damage.

Policy Agenda Setting of Floating Solar PV - Based on the Co-evolution of Technology and Institutions - (수상태양광 정책의제설정 연구 - 기술과 제도의 공진화 관점 -)

  • Lee, Youhyun;Kim, Kyoung-min
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.6
    • /
    • pp.493-500
    • /
    • 2021
  • Floating solar photovoltaic (hereinafter PV) power generation is emerging as a proper alternative to overcome various environmental limitations of existing offshore PV generation. However, more government-led policy design and technical and institutional development are still required. Based on the policy agenda setting theory and technological innovation theory, this study contains the research questions concerning the co-evolution of technology and the floating solar PV policy. This study primarily evaluates the technological and institutional development level of floating solar PV policy through a survey of domestic floating solar PV experts. Secondly, we also analyze the kind of policy agenda that should be set a priori. Analyzing the priorities to be considered, the first environmental enhancement needs to be considered from both the technical and institutional aspects. The second candidate task for the policy agenda is residents' conflict and improvement of regulations. Both candidate tasks need to be actively considered in the policy agenda from the institutional point of view. The third is publicity, profit sharing, follow-up monitoring, and cost. Among them, public relations and profit sharing are tasks that need to be considered in the policy agenda from the institutional point of view. On the other hand, the cost of follow-up monitoring should be considered as a policy agenda in terms of technology, system, and common aspects. Finally, there are technical standards. Likewise, technical standards need to be considered in the policy agenda in terms of both technical and institutional commonality.

Comparative Study of Effect of Wind and Wave Load on Floating PV: Computational Simulation and Design Method (수상 태양광 발전 부유체에 대한 풍하중과 파랑하중을 통한 전산 해석과 설계적 방법의 비교 연구)

  • Lee, Gyu-Han;Choi, Ji-Woong;Seo, Ji-Hyun;Ha, Hojin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.11
    • /
    • pp.9-17
    • /
    • 2019
  • Interest in renewable energy is rapidly growing around the world. One of the most popular renewable energy sources is solar power, and photovoltaic (PV) systems are the most representative route for generating solar energy. However, with the growing adoption of solar power systems, the demand for land on which to install these systems has increased, which has caused environmental degradation. Recently, floating PV systems have been designed to utilize idle water surface areas of dams, rivers, and oceans. Because floating PV systems will be exposed to harsh environmental stresses, the safety of such systems should be secured before installation. In this study, the structural robustness of a floating PV system was analyzed by conducting numerical simulation to investigate whether the system can withstand harsh environmental stresses, such as wind and wave loads. Additionally, conventional wind and wave load predictions based on the design method and the simulation results were compared. The comparison revealed that the design method overestimated wind and wave loads. The total drag of the PV system was significantly overestimated by the conventional design criteria, which would increase the cost of the mooring system. The simulation offers additional advantages in terms of identifying the robustness of the floating PV system because it considers real-world environmental factors.

Installation and Safety Evaluation of Tracking-type Floating PV Generation Structure (추적식 수상 태양광발전 구조물의 시공 및 안전성 평가)

  • Jang, Min-Jun;Kim, Sun-Hee;Lee, Young-Geun;Woo, Sang-Byock;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.5 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • Pultruded glass fiber reinforced polymeric plastic (PFRP) and FRP member manufactured by sheet molding compound (SMC) have superior mechanical and physical properties compared with those of conventional structural materials. Since FRP has an excellent corrosion-resistance and high specific strength and stiffness, the FRP material may be highly appreciated for the development of floating-type photovoltaic (PV) power generation system. In this paper, advanced floating PV generation system made of PFRP and SMC is designed. In the design, it includes tracking solar altitude by tilting photovoltaic arrays and tracking solar azimuth by spinning structures. Moreover, the results of the finite element analysis (FEA) are presented to confirm stability of entire structure under the external loads. Additionally, installation procedure and mooring systems in the Hap-Cheon Dam are discussed and the measurement of strain under the actual circumstances is conducted for assuring stability of actually installed structures. Finally, by comparison with allowable stress, appropriate safety of structure is confirmed to operate the system.

A Study on the Output and Reliability Characteristics of Ultra Barrier Film PV Module (고분자 보호 필름을 적용한 태양광 모듈의 출력 및 신뢰성에 관한 연구)

  • Lim, Jong Rok;Shin, Woo Gyun;Yoon, Hee Sang;Kim, Yong Sung;Ju, Young-Chul;Ko, Suk-Whan;Kang, Gi-Hwan;Hwang, Hye-Mi*
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.5
    • /
    • pp.1-10
    • /
    • 2019
  • Recently, the installation capacity of PV (photovoltaic) systems has been increasing not only field installation but also floating PV, farm land, BIPV/BAPV. For this reason, the new design and materials of PV module are needed. In particular, in order to apply a PV system to a building, lightweight of the PV module is essential. PV modules made of generally used texturing glass are excellent in output and reliability, but there is a limit to the weight that can be reduced. For the lightweight of the PV module, it necessary to use a film instead of a glass. However, the application of film rather than a glass may cause various problems such as decrease in photocurrent by decrease in transmittance and a increase of CTM (cell to module) loss, a degradation of the reliability, and so on. In this paper, PV modules using Ultra barrier film, which is recently a lot of interest as a substitute for a glass, its characteristic analysis and reliability test were conducted. The transmittance and UV characteristics of each material were verified, and the output of the fabricated 1 cell PV module was measured. In addition, 24 cell PV modules were fabricated at the lab-scale and its reliability tests were conducted. As a result of the experiment, the reliability characteristics of the ultra barrier film PV module were excellent, and it was confirmed that it could be used as the front material of the PV module instead of glass