• Title/Summary/Keyword: floating architecture

Search Result 430, Processing Time 0.022 seconds

A Study on the Optimal Shape Design of a Floating Offshore Wind Turbine (부유식 해상 풍력 발전기의 최적 형상 설계에 관한 연구)

  • Park, Jeong-Hoon;Shin, Hyunkyoung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.3
    • /
    • pp.171-179
    • /
    • 2015
  • Usually, in case of wind turbines on land, there are a lot of constraints for installation such as the insufficient installation space and noise pollution. On March 11, 2011, a nuclear leakage accident occurred due to the tsunami caused by the earthquake in Japan and then there have been a rapidly growing interest in floating offshore wind turbines. In this study, an optimization of the substructure of a semi-submersible type floating offshore wind turbine was made. Design variables were set and design alternatives were fixed. UOU-FAST was used for motion analysis in combined environmental conditions of waves and wind. Response Amplitude Operators(RAOs) were compared between the design alternatives.

Simplified formulas of heave added mass coefficients at high frequency for various two-dimensional bodies in a finite water depth

  • Koo, Weoncheol;Kim, Jun-Dong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.1
    • /
    • pp.115-127
    • /
    • 2015
  • The aim of this study is to develop a simplified formula for added mass coefficients of a two-dimensional floating body moving vertically in a finite water depth. Floating bodies with various sectional areas may represent simplified structure sections transformed by Lewis form, and can be used for floating body motion analysis using strip theory or another relevant method. Since the added mass of a floating body varies with wave frequency and water depth, a correction factor is developed to take these effects into account. Using a developed two-dimensional numerical wave tank technique, the reference added masses are calculated for various water depths at high frequency, and used them as basis values to formulate the correction factors. To verify the effectiveness of the developed formulas, the predicted heave added mass coefficients for various wetted body sections and wave frequencies are compared with numerical results from the Numerical Wave Tank (NWT) technique.

Machine Learning Based Architecture and Urban Data Analysis - Construction of Floating Population Model Using Deep Learning - (머신러닝을 통한 건축 도시 데이터 분석의 기초적 연구 - 딥러닝을 이용한 유동인구 모델 구축 -)

  • Shin, Dong-Youn
    • Journal of KIBIM
    • /
    • v.9 no.1
    • /
    • pp.22-31
    • /
    • 2019
  • In this paper, we construct a prototype model for city data prediction by using time series data of floating population, and use machine learning to analyze urban data of complex structure. A correlation prediction model was constructed using three of the 10 data (total flow population, male flow population, and Monday flow population), and the result was compared with the actual data. The results of the accuracy were evaluated. The results of this study show that the predicted model of the floating population predicts the correlation between the predicted floating population and the current state of commerce. It is expected that it will help efficient and objective design in the planning stages of architecture, landscape, and urban areas such as tree environment design and layout of trails. Also, it is expected that the dynamic population prediction using multivariate time series data and collected location data will be able to perform integrated simulation with time series data of various fields.

Method for Increasing Stability by Reducing the Motion of a Lightweight Floating Body (경량 부유체의 운동 저감으로 안정성 증가방법에 관한 연구)

  • Seon-Tae Kim;Jea-Yong Ko;Yu-mi Han
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.4
    • /
    • pp.407-416
    • /
    • 2023
  • Demand for leisure facilities such as mooring facilities for berthing leisure vessels and floating pensions based on floating bodies is increasing owing to the rapid growth of the population and related industries for marine leisure activities. Owing to its relatively light weight as a fluid, inclination is easily generated by waves and surcharges flowing to the coast, resulting in frequent safety accidents because of the low stability. As a solution to this problem, a motion reduction device for floating bodies is proposed in this study. The device (motion reduction device based on the air pressure dif erence) was attached to a floating body and the effect was analyzed by comparing the results with those of a floating body without motion reduction. The effect analysis was further analyzed using a computer analysis test, and the method for increasing the stability of the floating body was studied, and its the effect was verified. Based on the analysis of the test results, the stability of the floating body increased with a motion damping device is higher than that of the floating body without a motion reducing device as the wave momentum reduces, owing to the air pressure difference. Therefore it was concluded that the use of such a device for reducing motion a floating body is useful not only for non-powered ships but also for powered and semi-submersible ships, and further research should be conducted by applying it to various fields.

Estimation of Wave Loads Acting on Stationary Floating Body Using Viscous Numerical Wave Tank Technique (점성 수치파랑수조 기술을 이용한 고정된 부유체의 파랑하중 산정)

  • Kim, Kyung-Mi;Heo, Jae-Kyung;Jeong, Se-Min;Park, Jong-Chun;Kim, Wu-Joan;Cho, Yong-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.43-52
    • /
    • 2013
  • In the present study, a flow analysis for estimating the wave loads acting on a stationary floating body inside a viscous numerical wave tank was performed using the commercial software FLUENT. The governing equations for the viscous and incompressible fluid motion were the continuity and Navier-Stokes equations, and a piston-type wavemaker was employed to reproduce wave environments. First, the optimal simulation conditions were derived through numerical tests for the wavemaker and wave absorber, and then the wave loads and wave run-up on a vertical truncated cylinder were estimated and compared with the experimental and other numerical results.

Note on the Development of Ballast Water Shifting System for Solar Tracking of the Floating Photovoltaic Plant (밸러스트 수 이동으로 태양을 추적하는 부유식 태양광 발전시스템 개발)

  • Oh, Jungkeun;Kim, Jun-Ho;Kim, Seung-Sup;Kim, Hyochul;Lew, Jae-Moon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.4
    • /
    • pp.290-299
    • /
    • 2016
  • The most powerful energy resource in nature is solar energy which becomes directly converted to electric power in worldwide. Most of the photovoltaic power plants are commonly installed on sunny side of the ground. Thus the installation of photovoltaic power plant could produce an unexpected adverse effect by sacrificing the productivity from green field or forest. To avoid these adverse effect floating photovoltaic plant has been devised and installed on inland reservoir. The photovoltaic plant could utilize ignored water surface without sacrificing the productivity of the ground. Additionally the photovoltaic efficiency has been reenforced by the cooling effect induced by the circulating air flow from water surface. The floating photovoltaic plant could be furnished solar tracking ability by tilting the system operated with the aid of the ballast system. This report is provided to introduce the design of the floating structure with solar panel which furnished solar tracking ability with the aid of ballast system.

A Study on the Weight Estimation Model of Floating Offshore Structures using the Non-linear Regression Analysis (비선형 회귀 분석을 이용한 부유식 해양 구조물의 중량 추정 모델 연구)

  • Seo, Seong-Ho;Roh, Myung-Il;Shin, Hyunkyoung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.6
    • /
    • pp.530-538
    • /
    • 2014
  • The weight estimation of floating offshore structures such as FPSO, TLP, semi-Submersibles, Floating Offshore Wind Turbines etc. in the preliminary design, is one of important measures of both construction cost and basic performance. Through both literature investigation and internet search, the weight data of floating offshore structures such as FPSO and TLP was collected. In this study, the weight estimation model was suggested for FPSO. The weight estimation model using non-linear regression analysis was established by fixing independent variables based on this data and the multiple regression analysis was introduced into the weight estimation model. Its reliability was within 4% of error rate.

A hardware design of Rate control algorithm for H.264 (H.264 율제어 알고리듬의 하드웨어 설계)

  • Suh, Ki-Bum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.1
    • /
    • pp.175-181
    • /
    • 2010
  • In this paper, we propose a novel hardware architecture for Rate control module for real time full HD video compression. In the proposed architecture, QP is updated by using the rate control algorithm to every the macroblock line(120MB for Full HD, 20MB for CIF image). Since there are many complex arithmetic and floating point arithmetic in rate control algorithm of JM for H.264, it is impossible to process the rate control algorithm using the integer arithmetic CPU core. So we adopted floating point arithmetic unit in our architecture, and implemented the rate control algorithm using the floating unit. With this implemented hardware, the implemented hardware is verified to be operated in real time.

A Study on Effect of Aerodynamic Loads on Mooring Line Responses of a Floating Offshore Wind Turbine (공기 동역학 하중이 부유식 해상 풍력 발전기의 계류선 응답에 미치는 영향에 관한 연구)

  • Kim, Hyungjun;Han, Seungoh;Choung, Joonmo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.1
    • /
    • pp.43-51
    • /
    • 2015
  • This paper presents effect of aerodynamic loads on mooring line responses of a floating offshore wind turbine. A Matlab code based on blade element momentum (BEM) theory is developed to consider aerodynamic loads acting on NREL 5MW wind turbine. The aerodynamic loads are coupled with time-domain hydrodynamic analyses using one-way interaction scheme of the wave and wind loads. A semi-submersible floating platform which is from Offshore Code Comparison Collaborative Continuation(OC4) DeepCWind platform is used with catenary mooring lines simply composed of studless chain links. Average values of mooring peak tensions obtained from aerodynamic load consideration are significantly increased compared to those from simple wind drag force consideration. Consideration of aerodynamic loads also yield larger tension ranges which can be important factor to reduce fatigue life of the mooring lines.

A Study on Weight Estimation Model of Floating Offshore Structures using Enhanced Genetic Programming Method (개선된 유전적 프로그래밍 방법을 이용한 부유식 해양 구조물의 중량 추정 모델 연구)

  • Um, Tae-Sub;Roh, Myung-Il;Shin, Hyunkyoung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • The weight estimation of floating offshore structures such as FPSO, TLP, semi-Submersibles, Floating Offshore Wind Turbines etc. in the preliminary design, is one of direct measures of both construction cost and basic performance. Through both literature investigation and internet search, the weight data of floating offshore structures such as FPSO and TLP was collected. In this study, the weight estimation model with the genetic programming was suggested for FPSO. The weight estimation model using genetic programming was established by fixing the independent variables based on this data. In addition, the correlation analysis was performed to make up for the weak points of genetic programming; it is apt to induce over-fitting when the number of data is relatively smaller than that of independent variables. That is, by reducing the number of variables through the analysis of the correlation between the independent variables, the increasing effect in the number of weight data can be expected. The reliability of the developed weight estimation model was within 2% of error rate.