• Title/Summary/Keyword: flip

Search Result 889, Processing Time 0.024 seconds

Effects of Orifice Internal Flow on Transverse Injection into Subsonic Crossflows: Cavitation and Hydraulic Flip (오리피스 내부 유동조건에 따른 수직분사제트의 분열특성에 대한 연구)

  • 안규복;김정훈;윤영빈
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.72-75
    • /
    • 2003
  • In this research, we focused on the effects of the orifice internal flow such as cavitation and hydraulic flip. The breakup characteristics such as the breakup length and trajectory were measured by changing the orifice diameter (d), the orifice length/orifice diameter (L/d), the injection pressure and the shapes (sharp and round) of orifice entrance to provide a lot of conditions of the orifice internal flow. It is found that cavitation bubbles that occur inside the sharp-edged orifice make the liquid jet ejecting from the orifice turbulent. In the orifices (L/d = 5), the hydraulic flip phenomenon is shown when the injection pressure is high. In case cavitation occurs it breaks up more earlier than that in case of non-cavitation. In case hydraulic flip occurs, since the area of the liquid jet becomes small, the breakup length is also small as that in case of cavitation. But the liquid column trajectories have a similar tendency irrespective of cavitation.

  • PDF

Bonding Method and Packaging of High Temperature RFID Tag (고온용 RFID 태그 패키징 및 접합 방법)

  • Choi, Eun-Jung;Yoo, Dea-Won;Byun, Jong-Hun;Ju, Dae-Keun;Sung, Bong-Gun;Cho, Byung-Lok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1B
    • /
    • pp.62-67
    • /
    • 2010
  • Our research group has investigated that RFID tag packaging development and RFID tag flip chip bonding method influences on the industry-environmental customized RFID tag development that has applications to various industry environmental conditions. RFID tag flip chip bonding is consisting with wire bonding, ultrasonic bonding, heat plate bonding, and laser bonding and those methods are also depending on the different RFID tag development. Our research data shows that, among the various industrial environments such as an extremely high temperature, cryogenic, high-humidity, flexible, high-durable, development of RFID tag in an extremely high temperature is inappropriate for laser bonding method, converting of heat energy as absorbing light energy or heat plate bonding method of straight heat transferring manner, on the other hand, is suitable for wire bonding method which directly connect bump to pattern using wire.

Case Study on Flip Learning Application to Preparatory Childhood Teachers (예비유아교사의 플립러닝 적용 사례 연구)

  • Pyo, Chang-woo
    • Journal of the Korea society of information convergence
    • /
    • v.8 no.1
    • /
    • pp.39-47
    • /
    • 2015
  • This study was conducted to identify the experience that applied Flip Learning to preparatory childhood teachers. The target of study is 76 students who were in the first semester of the first year of three-year early childhood education major and took teaching profession subjects for 2 credits. The semester was run for 13 week-course from the beginning of March to the middle of June. Flip Learning was applied to all the classes. Data was collected through qualitative analysis of participants' journals and was concluded with the category of three strengths and four weaknesses. The strengths were firstly active class participation, secondly repetition learning, and thirdly self directed learning. The weaknesses were firstly a burden on class time, secondly improvement on Flip Learning methods, and thirdly a need of ability for self-directed learning and fourthly the experience of environmental unstability for prior learning. It suggests application examples of more effective teaching and learning methods for college professors and students through the case that applied Flip Learning to preparatory early childhood teachers.

  • PDF

FLIP CHIP ON ORGANIC BOARD TECHNOLOGY USING MODIFIED ANISOTROPIC CONDUCTIVE FILMS AND ELECTROLESS NICKEL/GOLD BUMP

  • Yim, Myung-Jin;Jeon, Young-Doo;Paik, Kyung-Wook
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.2
    • /
    • pp.13-21
    • /
    • 1999
  • Flip chip assembly directly on organic boards offers miniaturization of package size as well as reduction in interconnection distances resulting in a high performance and cost-competitive Packaging method. This paper describes the investigation of alternative low cost flip-chip mounting processes using electroless Ni/Au bump and anisotropic conductive adhesives/films as an interconnection material on organic boards such as FR-4. As bumps for flip chip, electroless Ni/Au plating was performed and characterized in mechanical and metallurgical point of view. Effect of annealing on Ni bump characteristics informed that the formation of crystalline nickel with $Ni_3$P precipitation above $300^{\circ}C$ causes an increase of hardness and an increase of the intrinsic stress resulting in a reliability limitation. As an interconnection material, modified ACFs composed of nickel conductive fillers for electrical conductor and non-conductive inorganic fillers for modification of film properties such as coefficient of thermal expansion(CTE) and tensile strength were formulated for improved electrical and mechanical properties of ACF interconnection. The thermal fatigue life of ACA/F flip chip on organic board limited by the thermal expansion mismatch between the chip and the board could be increased by a modified ACA/F. Three ACF materials with different CTE values were prepared and bonded between Si chip and FR-4 board for the thermal strain measurement using moire interferometry. The thermal strain of ACF interconnection layer induced by temperature excursion of $80^{\circ}C$ was decreased with decreasing CTEs of ACF materials.

  • PDF

A Flip Chip Packaged 40 Gb/s InP HBT Transimpedance Amplifier (플립칩 패키지된 40Gb/s InP HBT 전치증폭기)

  • Ju, Chul-Won;Lee, Jong-Min;Kim, Seong-Il;Min, Byoung-Gue;Lee, Kyung-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.183-184
    • /
    • 2007
  • A 40 Gb/s transimpedance amplifier IC was designed and fabricated with a InP/InGaAs HBTs technology. In this study, we interconnect 40Gbps trans impedance amplifier IC to a duroid substrate by a flip chip bonding instead of conventional wire bonding for interconnection. For flip chip bonding, we developed fine pitch bump with the $70{\mu}m$ diameter and $150{\mu}m$ pitch using WLP process. To study the effect of WLP, electrical performance was measured and analyzed in wafer and package module using WLP. The Small signal gains in wafer and package module were 7.24 dB and 6.93dB respectively. The difference of small signal gain in wafer and package module was 0.3dB. This small difference of gain is due to the short interconnection length by bump. The characteristics of return loss was under -10dB in both wafer and module. So, WLP process can be used for millimeter wave GaAs MMIC with the fine pitch pad and duroid substrate can be used in flip chip bonding process.

  • PDF

T1-Based MR Temperature Monitoring with RF Field Change Correction at 7.0T

  • Kim, Jong-Min;Lee, Chulhyun;Hong, Seong-Dae;Kim, Jeong-Hee;Sun, Kyung;Oh, Chang-Hyun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.22 no.4
    • /
    • pp.218-228
    • /
    • 2018
  • Purpose: The objective of this study is to determine the effect of physical changes on MR temperature imaging at 7.0T and to examine proton-resonance-frequency related changes of MR phase images and T1 related changes of MR magnitude images, which are obtained for MR thermometry at various magnetic field strengths. Materials and Methods: An MR-compatible capacitive-coupled radio-frequency hyperthermia system was implemented for heating a phantom and swine muscle tissue, which can be used for both 7.0T and 3.0T MRI. To determine the effect of flip angle correction on T1-based MR thermometry, proton resonance frequency, apparent T1, actual flip angle, and T1 images were obtained. For this purpose, three types of imaging sequences are used, namely, T1-weighted fast field echo with variable flip angle method, dual repetition time method, and variable flip angle method with radio-frequency field nonuniformity correction. Results: Signal-to-noise ratio of the proton resonance frequency shift-based temperature images obtained at 7.0T was five-fold higher than that at 3.0T. The T1 value increases with increasing temperature at both 3.0T and 7.0T. However, temperature measurement using apparent T1-based MR thermometry results in bias and error because B1 varies with temperature. After correcting for the effect of B1 changes, our experimental results confirmed that the calculated T1 increases with increasing temperature both at 3.0T and 7.0T. Conclusion: This study suggests that the temperature-induced flip angle variations need to be considered for accurate temperature measurements in T1-based MR thermometry.

A Time-to-Digital Converter Using Dual Edge Flip Flops for Improving Resolution (분해능 향상을 위해 듀얼 에지 플립플롭을 사용하는 시간-디지털 변환기)

  • Choi, Jin-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.7
    • /
    • pp.816-821
    • /
    • 2019
  • A counter-type time-to-digital converter was designed using a dual edge T flip-flop. The time-to-digital converter was designed with a $0.18{\mu}m$ CMOS process at a supply voltage of 1.5 volts. In a typical time-to-digital converter, when the period of the clock is T, a conversion error corresponding to the period of the clock occurs due to the asynchronism between the input signal and the clock. However, the clock of the time-to-digital converter proposed in this paper is generated in synchronization with the start signal which is the input signal. As a result, conversion errors that may occur due to asynchronization of the start signal and the clock do not occur. The flip-flops constituting the counters are composed of dual-edge flip-flops operating at the positive and negative edges of the clock to improve the resolution.

XOR Gate Based Quantum-Dot Cellular Automata T Flip-flop Using Cell Interaction (셀 간 상호작용을 이용한 XOR 게이트 기반의 양자점 셀룰러 오토마타 T 플립플롭)

  • Yu, Chan-Young;Jeon, Jun-Cheol
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.1
    • /
    • pp.558-563
    • /
    • 2021
  • Quantum-Dot Cellular Automata is a next-generation nanocircular design technology that is drawing attention from many research organizations not only because it is possible to design efficient circuits by overcoming the physical size limitations of existing CMOS circuits, but also because of its energy-efficient features. In this paper, one of the existing digital circuits, T flip-flop circuit, is proposed using QCA. The previously proposed T flip-flops are designed based on the majority gate, so the circuits are complex and have long delays. Therefore, the design of the XOR gate-based T flip-flop using cell interaction reduces circuit complexity and minimizes latency. The proposed circuit is simulated using QCADesigner, and the performance is compared and analyzed with the existing proposed circuits.

A Study on Low Residue Flux for Improving Flip Chip Non-wet and Reliability (Flip Chip Non-wet 개선 및 신뢰성 향상을 위한 Low Residue Flux 구현 방안 연구)

  • Lee, Hyunsuk;Kim, Minseok;Kim, Taehoon;Moon, Kiill
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.2
    • /
    • pp.45-50
    • /
    • 2021
  • As the difficulty of flip chip products increases, there is a growing interest in the material of flux, which is safe from the solder wetting and reliability. In the case of no clean flux, there is merit in terms of process efficiency because there is no cleaning process. But Cu migration and delamination can be occurred if the residue remains after the reflow process. In this study, major element materials, solvent and activator, are changed and confirmed effect of non-wet and reliability in the package environment. Stability of materials were secured through storage stability evaluation, and we found out non-wet zero materials through the application of two types of solvent and activator with different boiling point and the increase of activator content. After reliability test, no delamination was found in the plane analysis, which secured the final composition of low residue flux.

The Influence of Learning Commitment and Interest by Repetitive Education Activities of Adult Learners on Satisfaction in Online Learning Using Flip Learning Pedagogy (플립러닝을 활용한 온라인 학습에서 중·장년층 학습자의 반복학습에 따른 학습몰입과 흥미가 학습만족도에 미치는 영향)

  • Kang, Tae-Gu;Lim, Gu-Won
    • Journal of Industrial Convergence
    • /
    • v.19 no.3
    • /
    • pp.27-34
    • /
    • 2021
  • In the era of the 4th industrial revolution, the age of artificial intelligence, the development of ICT technology is having various effects on the online and offline educational environment. The universal access of online education changes the educational paradigm and converts it to a learner-centered service. At the time when a new educational environment is required to change, interest in flip learning is increasing. Even adult learner's online learning needs is also shown very high. The purpose of this study was to investigate how repetitive learning activities through flip learning for middle-aged online learners of K-Cyber University has a relationship and structural relationship between the effects of learning immersion and learning interest on learning satisfaction. Through this study, there is significance in research to suggest direction for learning satisfaction based on flip learning. For further studies, if a model of analysis of various factors that can be measured is specified and applied, it can be used as a research background that can maximize learning satisfaction based on flip learning.